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Rising logic densities together with the inclusion of dedicated processor cores push reconfigurable

devices from being applied for glue logic and prototyping towards implementing complete reconfig-

urable systems-on-chip. The mix of fast CPU cores and fine-grained reconfigurable logic allows to

map both sequential, control-dominated code and highly parallel data-centric computations onto

one platform. However, traditional design techniques that view specialized hardware circuits as

passive coprocessors are ill-suited for programming these reconfigurable computers. In particular,

the programming models for software—running on an embedded operating system—and digital

hardware—synthesized to an FPGA—lack commonalities, which hinders design space exploration

and severely impairs the potential for code reuse.

In this article, we present ReconOS, an execution environment based on existing embedded

operating systems that extends the multithreaded programming model established in the software

domain to reconfigurable hardware. Using threads and common synchronization and communi-

cation services as an abstraction layer, ReconOS allows for the creation of portable and flexible

multithreaded applications targeting CPU/FPGA systems. This article discusses the ReconOS pro-

gramming model and its execution environment, presents implementations based on modern plat-

form FPGAs and the operating systems eCos and Linux, evaluates time and area overheads of

the proposed mechanisms and, finally, demonstrates the feasibility of the multithreading design

approach on several case studies.
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1. INTRODUCTION

Reconfigurable hardware devices have evolved from small logic-centric chips
to powerful platforms combining microprocessor cores with dense logic fabrics.
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Fig. 1. Example application in the multithreaded programming model.

Accordingly, the application domains for such devices have been extended from
the original glue logic over prototyping and ASIC replacement to modern re-
configurable computers that allow for the mapping of both complex control-
dominated tasks and data-centric parallel processing tasks to the same device.
However, design methodologies for such configurable systems-on-chip have not
kept up with the rise in complexity of reconfigurable hardware. In particular,
there is little overlap between programming models and practices for embedded
software and digital logic.

In this context, we are especially interested in the operating system layer. In
the embedded systems domain, real-time operating systems such as VxWorks
[Wind River, 2007], RTXC [Quadros Systems, Inc. 2007], eCos [eCosCentric
2008], and many proprietary systems provide the designer with a set of clearly
defined objects and associated services, which are encapsulated in application
programmer interfaces (e.g., the POSIX API [IEEE and The Open Group 2004]).
Among these basic objects, we typically find threads and processes as units of
execution, semaphores and related services for synchronization, and mailboxes
and their derivatives for communication. Threads are mostly characterized as
light-weight processes featuring a fast context switch. While threads within
a process share one address space, different processes are isolated from each
other. Real-time operating systems typically offer dynamic priority-based pre-
emptive scheduling for threads, minimized interrupt latencies, bounded execu-
tion times for system calls, and are highly configurable to satisfy small memory
footprint requirements.

The set of objects offered by an operating system together with the used
scheduling policy can be considered a programming model. While this model is
not comparable to formal models of computation, it does provide a designer with
an established way of structuring an application. Figure 1 sketches an example
for an application composed of several threads, semaphores, message queues,
and a shared memory region. In this example, THREAD A reads data out of a
message queue, processes it, and writes the result to a shared memory region,
synchronizing concurrent access to the shared memory with THREAD C via two
semaphores. When going from a CPU-based system to a CPU/FPGA platform,
it seems natural to simply extend the services offered by the operating system
to customized hardware cores. Analogous to a software thread, a hardware core
performing a specific task can be thought of as a hardware thread.
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Fig. 2. ReconOS abstraction layer for CPU/FPGA systems.

In this article we present ReconOS, an operating system for configurable
systems-on-chip that extends the multithreaded programming model from
software to reconfigurable hardware. The multithreaded programming model
represents an established abstraction layer used throughout the software
development field, from embedded devices using small real-time operating sys-
tem kernels to high-performance computing systems relying on full-fledged
multiuser operating systems. Moreover, multithreading is also supported by
several programming languages. In ReconOS, software and hardware threads
integrate and communicate seamlessly and transparently with the operat-
ing system using the same set of operating system services. We argue that
such an approach to integrating hardware cores into a processor-based sys-
tem greatly eases application development and increases productivity and
portability.

Figure 2 shows the abstraction layer provided by ReconOS. ReconOS lever-
ages standard operating system kernels, which allow for running any existing
code and facilitate the access to a variety of I/O devices. The ReconOS applica-
tion programmer interface (API) essentially provides POSIX functions as one
single development model for both software and hardware execution contexts.
As we show in this article, a designer is now able to map an application to a
portable model that can be directly executed on a variety of CPU/FPGA execu-
tion platforms.

Although well-established, multithreading as a model is often criticized for
its implicit nondeterminism, for example, by Lee [2006]. Partly, this can be
addressed by designing applications in a more formal model of computation
or coordination language, which are often domain-specific, and an automatic
mapping from such a formal model down to a multithreaded representation.
In essence, the ReconOS multithreaded programming model then forms an
abstraction layer in-between a domain-specific formalism and the underlying
heterogeneous execution resources. Although such formal models and their
mapping to ReconOS objects are not subject of this article, Figure 2 outlines
this option.
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The novel contribution of this work is the extension of the well-known mul-
tithreaded programming model across the software/hardware boundary. Re-
conOS leverages existing operating system kernels and allows threads to be
executed either on the CPU or in reconfigurable hardware, achieving an un-
paralleled flexibility and portability for the emerging class of CPU/FPGA sys-
tems. Compared to previously published conference contributions [Lübbers and
Platzner 2007, 2008b, 2008a], which focused on single aspects of ReconOS, this
article provides a comprehensive overview over ReconOS as well as a detailed
discussion of its programming and execution models, several implementations,
and elaborate experiments.

The remainder of this article is structured as follows: Section 2 reviews
related work in operating system approaches for reconfigurable computers.
The programming model used and implemented by ReconOS is explained in
Section 3. Section 4 details the execution model for hardware threads, with
Section 5 describing ReconOS implementations on two different existing soft-
ware operating system kernels and the underlying hardware architecture. In
Section 6, the performance of these implementations is evaluated and two case
studies are presented. Finally, Section 7 concludes the article and gives an
overview of ongoing and future work.

2. RELATED WORK

In the last decade, operating systems for reconfigurable computers have been
researched from a number of different angles. In the following, we first re-
view early work on concepts and functions for such operating systems, followed
by more recent efforts toward integrating reconfigurable hardware circuits as
tasks into mainstream operating systems and, finally, approaches to extend the
multithreaded programming model from software to hardware.

Brebner [1996, 1997] was one of the first to discuss hardware multitasking.
He proposed so-called swappable logic units that can be swapped in and out
of a partially reconfigurable device, driven by an operating system. Other au-
thors discussed further operating system functionalities. For example, Burns
et al. [1997] described operating system functions that perform translation
and rotation operations on hardware circuits to better fit them to the device.
Merino et al. [1998] split the reconfigurable surface into so-called slots and used
the operating system to schedule hardware tasks to these slots. Shirazi et al.
[1998] structured the run-time system into a monitor, a loader, and a configura-
tion store and investigated trade-offs between reconfiguration time and circuit
quality. Wigley and Kearney [2001] made the case for including partitioning
and allocation of reconfigurable resources as well as routing of hardware tasks
as operating system functions.

In the following years, a large body of work has been focusing on single func-
tions of future hardware operating systems. A prominent example is placement
and scheduling of hardware tasks, which has been studied under a variety of
task and resource models as well as optimization objectives. Examples can be
found in Jean et al. [1999], Bazargan et al. [2000], Teich et al. [2000], Steiger
et al. [2004], Danne and Platzner [2006], Danne et al. [2007], and Pellizzoni and
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Caccamo [2007]. Many efficient scheduling techniques, especially for real-time
systems, rely on task preemption. The preemption of hardware is a challenging
problem and has been studied and prototyped by, for example, Simmler et al.
[2000] or Kalte and Porrmann [2005]. Another issue related to placement and
scheduling is the fragmentation of the reconfigurable logic area. While many
of the presented placement and scheduling approaches try to avoid too much
fragmentation, some authors proposed to compact the reconfigurable area from
time to time. Examples can be found in Diessel et al. [2000] and Compton et al.
[2002]. Most of these works were either theoretical or, if experimental, evalu-
ated their algorithms by simulation studies on synthetic workloads, given the
absence of available hardware operating system implementations and accepted
benchmarks.

A number of prototypes have been created to demonstrate the feasibility of
reconfigurable hardware operating systems. For example, a networked reconfig-
urable platform for multimedia appliances that enables multitasking in hard-
ware and software was shown by Mignolet et al. [2002] and Nollet et al. [2003].
Prototype creation has always been hindered by limitations of available tech-
nology and design tools. More importantly, all the presented approaches viewed
hardware tasks as coprocessors rather than independent execution units. A first
step toward an approach that integrates hardware tasks as independent units
was shown by Walder and Platzner [2003] and Steiger et al. [2004], respectively.
In their prototype, hardware tasks have a higher degree of autonomy and can
access operating system objects, such as FIFOs, memory blocks, and I/O drivers,
and signal events to the operating system in order to drive the scheduler.

More recently, extensions of Linux have emerged that promote an OS-
controlled integration of software and hardware processes. Kosciuszkiewic et al.
[2007] built on top of an existing Linux operating system kernel and viewed so-
called hardware tasks as a drop-in replacement for software tasks. These hard-
ware tasks were executed on synthesized PicoBlaze softcore processors and did
not exploit the fine-grained parallelism provided by FPGAs. In the described
implementation, the interaction between software threads and hardware tasks
was limited to FIFO communication. Xie et al. [2007] presented a similar het-
erogeneous multiprocessor system consisting of soft processor cores synthesized
to an FPGA. Again, the Linux integration was limited to FIFO communication.
Bergmann et al. [2006] encapsulated access to hardware modules into software
wrappers, the so-called ghost processes, which provide a transparent interface
for interactions from the kernel and other processes. The authors considered
sharing the same address space between hardware and software execution units
as unsuitable. Technically, they used processes instead of threads to encapsu-
late hardware modules. For communication between software and hardware,
FIFOs mapped to the Linux file system as well as dual-ported memory accessi-
ble from both software processes and a hardware process were used, as shown
by Williams et al. [2005]. So et al. [2006] also modified and extended a stan-
dard Linux kernel with a hardware interface, providing conventional UNIX
IPC mechanisms to the hardware using a message passing network. Again,
communication between hardware and software processes was implemented
by FIFOs and mapped to file system-based operating system objects.
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All these approaches tried to connect circuits implemented in reconfigurable
hardware to existing operating system objects to ease communication between
software and hardware. While simplifying the design of hardware/software sys-
tems to a certain degree, such an approach poses severe restrictions to the
thread designer as only one specific communication service is available. In con-
trast, we believe that supporting a unified programming model for both soft-
ware and hardware threads alike, supported by a rich set of operating system
functions, is essential for exploiting the full potential of hybrid reconfigurable
hardware/software systems while maintaining portability across different op-
erating systems and hardware platforms.

ReconOS extends the multithreaded programming model from software to
hardware. The multithreaded model was also taken up by Duchenne and Hanna
[2005] who presented a high-level synthesis approach starting from Java. In-
stead of trying to extract parallelism from sequential code, they synthesized
explicitly concurrent (i.e., multithreaded) Java programs to a hardware archi-
tecture. A more closely related effort to ReconOS is the hthreads project [Peck
et al. 2006]. In hthreads, hardware threads are managed by the operating sys-
tem and are able to access various OS functions through a dedicated hardware
thread interface while sharing memory through a sophisticated interthread
memory model [Anderson et al. 2007]. hthreads is based on the POSIX pthreads
programming model for both hardware and software threads and implements
the OS components managing synchronization and task scheduling as hard-
ware IP cores. In comparison to ReconOS, hthreads sacrifices the flexibility of a
software operating system kernel for exceptionally low response time and jitter
[Agron et al. 2006], which caters to the needs of the targeted embedded systems
domain.

3. THE RECONOS PROGRAMMING MODEL

An important design goal of the ReconOS programming model is its portability,
and—somewhat closely related—its flexibility. ReconOS tries to (re)use much
of the interface and functionality already present in established APIs, such
as POSIX or the eCos kernel API. Consequently, most ReconOS programming
model primitives or operating system objects are implemented by an operating
system kernel running on the system CPU. ReconOS applications are typically
crafted from the following operating system objects:

—Threads are the basic units of execution that make up an application. It
is up to the developer to partition an application into threads, which then
communicate and synchronize using other operating system objects.

—Semaphores and Mutexes provide means for high-level synchronization; they
can be used to sequentialize execution of threads, to protect critical code
regions, or to manage exclusive access to shared resources.

—Shared memory, message queues and mailboxes are used for interthread
communication. Generally, access to shared memory must be protected by
synchronization primitives, as is necessary for any shared resource. Message
queues and mailboxes occupy a special niche among the operating system
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Table I. Overview of ReconOS API Functions

OS Object POSIX API (software) ReconOS API (hardware)

semaphores sem post() reconos sem post()

sem wait() reconos sem wait()

mutexes pthread mutex lock() reconos mutex lock()

pthread mutex unlock() reconos mutex unlock()

condition variables pthread cond wait() reconos cond wait()

pthread cond signal() reconos cond signal()

pthread cond broadcast() reconos cond broadcast()

message queues / reconos mq send()

mail boxes mq send() reconos mbox put()

reconos mbox tryput()

reconos mq receive()

mq receive() reconos mbox get()

reconos mbox tryget()

shared memory reconos write()*ptr = value
reconos write burst()

reconos read()value = *ptr
reconos read burst()

threads pthread exit() reconos thread exit()

pthread create() —

objects—they provide both communication and synchronization at the same
time.

The fact that all interthread activity is carried out using only these objects
provides complete transparency within these interactions; a thread does not
need to know whether its communication or synchronization partners are lo-
cated in hardware or software—which, in turn greatly facilitates design space
exploration with respect to the hardware/software partitioning. Also, as long as
the interfaces to the respective operating system objects are supported, the in-
teroperability and portability of threads can be easily maintained when moving
to a different target platform.

It should be noted that it is the set of programming model primitives, not
the individual API calls, that provides these benefits of the multithreaded pro-
gramming model as implemented by ReconOS. For example, a software thread
using the POSIX API can communicate seamlessly with a hardware thread
using the ReconOS API (outlined in Section 3.2), as long as they use the same
programming model abstraction (e.g., a mailbox/message queue).

An overview of the operating system objects and their related ReconOS and
POSIX API calls, as used by hardware and software threads, respectively, is
shown in Table I. Most hardware functions are direct counterparts to the POSIX
software API. Notable exceptions include the mailboxes, which provide separate
sets of calls for blocking and nonblocking put and get operations, and memory
accesses, which can explicitly request single-word or burst transfers. Currently,
the ReconOS hardware API supports the most important subset of the calls
available in POSIX; the incorporation of additional functions, such as calls for
thread creation or scheduler control, requires only minimal extensions to the
execution environment and is planned as future work.
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1 mqd_t mqueue_in1;

2 sem_t sem_new, sem_ready;

3 void *shared_mem;

4

5 void *thread_a_entry( void *data ) {

6 uint8 buf[ MSG_SIZE ];

7

8 while ( true ) {

9 mq_receive( mqueue_in1, buf, MSG_SIZE, 0 );

10 do_something( buf );

11 sem_wait( sem_ready );

12 memcpy( shared_mem, buf, MSG_SIZE );

13 sem_post( sem_new );

14 }

15 }

Listing 1. Code implementing software thread THREAD A.

In the following, we first present the programming of software threads and,
more importantly, hardware threads under ReconOS. Then, we discuss the cre-
ation and termination of threads as well as access to shared resources.

3.1 Software Threads

ReconOS software threads are identical to regular threads of the host operating
system both in concept and implementation. Since software threads are han-
dled by the standard OS scheduler, they are independent from the ReconOS
extensions.

Currently, software threads can be implemented using either the eCos kernel
API or the POSIX pthreads API—the ReconOS operating system objects can
be seamlessly mapped to either API. It is recommended to use POSIX where
possible, as it is the more portable API of the two and is also supported via a
compatibility layer in eCos. Listing 1 shows an example of a software thread im-
plementing THREAD A from the application shown in Figure 1, using the POSIX
API. Here, data is received from a message queue (MQUEUE IN1), processed,
and then copied to shared memory, which is synchronized using semaphores
(SEM READY and SEM NEW).

3.2 Hardware Threads

Software threads have sequential execution semantics. To use an operating sys-
tem service, a software thread simply calls the corresponding function in the
operating system library. Hardware tasks, on the other hand, are inherently
parallel. Mostly, there is no single control flow and thus no apparent notion
of calling an operating system function. In particular, typical hardware de-
scription languages, such as VHDL, offer no built-in mechanism to implement
blocking calls.

To present as unified a programming model as possible to the user, we rely
on the following approach: We structure a hardware thread such that all in-
teractions with the operating system are managed by a single sequential state
machine. To this end, we have developed an operating system function library
for VHDL. This library contains code implementing the system call signaling
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Fig. 3. Example of an OS synchronization state machine.

wrapped into VHDL procedures (e.g., reconos sem wait()). Together with the
operating system interface (OSIF), a separate synchronizing logic module serv-
ing as the connection between the hardware thread and the OS, these proce-
dures are able to establish the semantics of blocking calls in VHDL. A hardware
thread thus consists of at least two VHDL processes: the synchronization state
machine and the actual user logic. The state transitions in the synchronization
state machine are always dependent on control signals from the OSIF; only
after a previous operating system call returns, the next state can be reached.
Thus, the communication with the operating system is purely sequential, while
the processing of the hardware thread itself can be highly parallel. It is up to
the programmer to decompose a hardware thread into a collection of user logic
modules and one synchronization state machine. Besides the increased com-
plexity due to the parallel nature of hardware, this process is no different from
programming a software thread.

An example demonstrating this mechanism is illustrated in Figure 3, which
again represents THREAD A from the previously example described. In this
example, the hardware thread receives a message into the local RAM, processes
it, waits on a semaphore (SEM READY), writes the result to shared memory,
and then posts another semaphore (SEM NEW). The OS synchronization state
machine and the user logic communicate via the two handshake signals run
and done. Listing 2 shows the corresponding VHDL implementation of the
synchronization state machine, using ReconOS system calls.

To further exemplify the underlying mechanism, consider the following
sequence of events. Upon reaching the state WAIT, the VHDL procedure
reconos sem wait() asserts the appropriate handshake signals in the OSIF to
signal a ReconOS semaphore wait call. The state signal is set simultaneously
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1 osif_fsm: process(clk, reset)

2 variable completed, success : boolean;

3 begin

4 if (reset = ’1’) then

5 state <= RECEIVE;

6 ram_addr <= 0;

7 run <= ’0’;
8 reconos reset(o osif, i osif);
9 elsif rising_edge(clk) then
10 reconos begin(o osif, i osif);

11 if reconos ready(i osif) then

12 case state is

13

14 when RECEIVE =>

15 reconos mq receive(completed, success, o osif, i osif,

16 MQUEUE_IN1, 0, MSG_SIZE);

17 if completed then

18 state <= RUN;

19 end if;

20

21 when RUN =>

22 run <= ’1’;

23 if done = ’1’ then

24 run <= ’0’;

25 state <= WAIT;

26 end if;

27

28 when WAIT =>

29 reconos sem wait(o osif, i osif, SEM READY);

30 state <= WRITE;

31

32 when WRITE =>

33 reconos write burst(o osif, i osif, 0, SHARED MEM);

34 state <= POST;

35

36 when POST =>

37 reconos sem post(o osif, i osif, SEM NEW);

38 state <= RECEIVE;

39

40 when others => null;

41 end case;

42 end if;

43 end if;

44 end process;

Listing 2. Code for the example of Figure 3.

to the next state, WRITE. However, the OSIF immediately asserts a blocking
signal, indicating that the request is being processed. On the next rising clock
edge, the blocking signal, evaluated in reconos ready(), prevents the synchro-
nization state machine from entering the WRITE state. Only after the operating
system call returns, the OSIF will deassert the blocking signal, which allows
the synchronization state machine to complete the state transition.

It should be noted that the local RAM is optional; single-word bus access is
also possible through the OS interface.
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1 // shared OS objects
2 mqd_t my_mqueue;

3 sem_t my_sem;

4
5 // resource array for hardware thread
6 reconos_res_t hwthread_resources[2] = {

7 { &my_mqueue, POSIX_MQD_T },

8 { &my_sem, POSIX_SEM_T }

9 };

10
11 // software thread object and attributes
12 pthread_t swthread;

13 pthread_attr_t swthread_attr;

14
15 // hardware thread object and attributes
16 rthread hwthread;

17 pthread_attr_t hwthread_swattr;

18 rthread_attr_t hwthread_hwattr;

19
20 // initialization of software thread attributes
21 pthread_attr_init(&swthread_attr);

22
23 // initialization of hardware thread attributes
24 pthread_attr_init(&hwthread_swattr);

25 rthread_attr_init(&hwthread_hwattr);

26 rthread_attr_setresources(&hwthread_hwattr,

27 hwthread_resources, 2);

28
29 // software thread creation
30 pthread_create(
31 &swthread, // thread object
32 &swthread attr, // attributes
33 swthread entry, // entry point
34 ( void * ) data // entry data
35 );

36
37 // hardware thread creation
38 rthread_create(

39 &hwthread, // thread object
40 &hwthread swattr, // software attributes
41 &hwthread hwattr, // hardware attributes
42 ( void * ) data // entry data
43 );

Listing 3. Creation of software and hardware threads compared.

3.3 Thread Creation and Termination

The creation of threads within the ReconOS programming model is almost
identical for software threads (using pthread create()) and hardware threads
(using rthread create()). The POSIX-like creation of both variants is shown in
Listing 3. A hardware thread takes the same scheduling and stack size param-
eters as a software thread, encapsulated in a pthread attr structure. These
are used for the hardware thread’s associated delegate thread (see Section 4.2)
and influence the hardware thread’s priority when contending for access to op-
erating system objects. The main difference between the creation of software
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and hardware threads exists in the passing of information about the shared
resources to the latter, which is done via a rthread attr structure. Currently,
creating a hardware thread using the rthread create() assumes that the hard-
ware thread is already present in the reconfigurable fabric. Usually, hardware
threads are configured to the FPGA together with the static hardware archi-
tecture (e.g., buses and peripherals) during system bootup. With partial recon-
figuration, as outlined in Section 7, the loading of hardware threads could be
implicitly done by the scheduler on thread creation.

Thread termination can either be initiated by the respective
threads themselves—using pthread exit() (within software threads) or
reconos thread exit() (within hardware threads)—or threads can be explic-
itly aborted using pthread kill().

Apart from POSIX, hardware and software threads can also be created and
terminated using the eCos API, if supported by the host OS. For hardware
threads, the same rthread attr structure can be used.

3.4 Shared Resources

Operating system objects will almost always be shared among different threads.
For software threads, this is usually achieved by representing the respective
resources as global variables accessible by all threads. This approach creates
significant problems when dealing with hardware threads. Since the synthesis
tool for a hardware thread written in VHDL cannot easily access the symbol
tables of associated software threads, we cannot use global variables defined
in software to share an operating system object. Passing a pointer to the data
structure representing the OS object to a hardware thread is a possible option;
however, it does not replicate the simplicity of the global variable approach.

To provide hardware thread designers with a comparably simple mecha-
nism, ReconOS associates an array of resources with every hardware thread.
The thread designer can then define integer constants in VHDL that act as
indices into the resource array, and use the symbolic constants as arguments
to the respective ReconOS API calls. The definition of the resource array—and
thus the mapping between symbolic VHDL constants and actual objects of the
operating system kernel—is established at design time; an example is shown in
Listing 3. This mechanism also transparently separates the hardware thread
API from the API used to define the OS objects (e.g., the eCos kernel API or the
POSIX API), and it provides a concise overview of the resources used by the
individual threads.

Conceptually, ReconOS hardware threads can directly access the same mem-
ory regions as software threads, which allows for efficient sharing of data
among threads. As far as the programming model is concerned, all threads
share the same address space. To manage concurrent accesses to these memory
areas, the threads will usually use synchronization mechanisms from ReconOS’
programming model, such as semaphores or mutexes.

In many execution environments, two mechanisms complicate the imple-
mentation of shared memory: caching and virtual memory. Many embedded
processors, such as the PowerPC 405 core included in some Xilinx FPGAs,
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feature a cache unit in the data path between CPU and the memory bus. Sharing
an address space between software threads running on this CPU and hardware
threads directly connected to the memory bus requires the application designer
to explicitly manage cache coherency issues, for example, by manually flush-
ing or invalidating cache lines before or after a synchronized data transfer
between the threads. This, however, somewhat dilutes the transparency of the
programming model. The concept of virtual memory, which is also present in
the ReconOS/Linux execution environment (see Section 5.3), further compli-
cates sharing memory. Although software threads usually share the same page
tables and virtual memory mappings, this information is not necessarily avail-
able for hardware threads. We currently circumvent this problem by allocating a
separate, physically contiguous block of memory that is marked as uncachable
and advertised to software threads through a memory-mappable filesystem
node. This area is then explicitly used for data exchange between hardware
and software threads. Section 7 discusses a more transparent solution.

4. THE RECONOS EXECUTION MODEL

Hardware circuits modeled as threads and synthesized to an FPGA require a
run-time environment to connect them to an existing operating system kernel.
On the hardware side, a well-specified interface is required to manage the re-
quests and responses of a hardware thread. On the software side, many of these
requests need to be forwarded to the host operating system kernel, and their
responses need to be relayed back to the hardware threads. This section details
the mechanisms employed by ReconOS to manage these tasks: the operating
system interface (OSIF) and the delegate threads.

4.1 The Operating System Interface

To be able to model hardware circuits executing on reconfigurable logic as
threads, it is necessary to carefully define mechanisms for low-level synchro-
nization and communication between the hardware circuitry and the operating
system. In ReconOS, this is the task of the OSIF. Figure 4 gives an overview
of the OSIF’s structure and its interfaces. On one side, the OSIF connects to
the hardware thread’s OS synchronization state machine and local RAM. On
the other side, the OSIF provides an interface to two bus systems, the system
memory bus (PLB) and an OS control bus (DCR). Further, the OSIF requires
an interrupt line to the CPU’s interrupt controller and features optional ports
to connect to FIFO cores. The OSIF itself is built from several modules whose
functions are described in the following.

4.1.1 Thread Supervision and Control. ReconOS provides hardware
threads with a hardware API that comes in the form of a function library
that specifies VHDL functions and procedures like reconos sem post() or
reconos thread exit() (see Table I). A designer can use these procedures inside
the thread’s OS synchronization state machine to sequentially call operating
system functions, much like a software thread uses functions from the operat-
ing system’s C-API. As a consequence, every state of the OS synchronization
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Fig. 4. OSIF overview and interfaces.

Table II. OSIF Communication Records

Signal Description

osif2task

command [0:7] requested OS call code

data [0:31] OS call arguments

request request strobe

error error flag

task2osif

data [0:31] return value of OS call

step [0:3] current step of multicycle command

valid indicates success of call

busy system buses are busy

blocking set while executing blocking OS calls

state machine may contain at most one VHDL system call. The VHDL proce-
dures are purely combinational and communicate with the OSIF through a set
of incoming and outgoing signals, which are assembled in the osif2task and
task2osif records shown in Table II.

The mechanisms that govern the OS call request-response interactions be-
tween the OSIF and the hardware thread are controlled by the command de-
coder module. This module receives OS call requests from the hardware thread,
decodes them and initiates the appropriate processes to fulfill that request. This
may involve, for example, raising an interrupt with the system CPU, initiating
a bus master transfer, or feeding data into a FIFO.
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Since the operating system executing on the CPU cannot process OS calls
within one clock cycle, the OSIF needs a means to suspend state transitions
of the thread’s OS synchronization state machine. This is achieved by having
the OS synchronization state machine routinely check input signals from the
osif2task record before setting its next state (see reconos ready() in Listing 2).
This way, the OSIF can block the part of the hardware thread that interacts with
the operating system, which effectively implements the semantics of blocking
calls in VHDL.

The OSIF distinguishes between two conditions that can suspend state tran-
sitions: busy and blocking. The hardware thread is held in the busy state as
long as there are pending bus transfers as a result of a thread’s request. On
the other hand, a thread enters the blocked state after calling an OS func-
tion that can lead to thread blocking, for example reconos sem wait(). For
the hardware thread, this distinction is arbitrary. The OSIF, however, man-
ages blocking and busy internally in different ways. The blocking signal is
a settable and resettable register that is indirectly controlled by the CPU,
while the busy signal is set asynchronously by the PLB and DCR modules (see
Section 4.1.2).

One of the purposes of the provided VHDL library is to make writing the OS
synchronization state machine as easy and straightforward as possible. Thus,
we want to avoid any complicated handshaking between state machine code and
the OSIF—the command decoder must be able to transparently suspend the
thread’s state machine without requiring the thread designer to explicitly check
for handshaking signals in every transition. Hence, the busy or blocking signals
must be asserted in the same clock cycle as the thread’s request signal. This is
achieved by clocking the command decoder’s state machine on the falling edge
of the clock, which avoids possible combinational loops and keeps all handshake
signals clock-synchronous.

Some of the supported OS calls require more than one 32-bit data argument.
An example for such a call is a single-word memory access (reconos write()),
which needs both an address and a data argument. Other calls produce a return
value, which the hardware thread needs to wait for (e.g., reconos mbox get()).
Neither of these calls can be completed in a single clock cycle. Furthermore,
these calls need to interact with the OSIF across multiple clock cycles, ruling out
simply delaying the state transition until the call completes and then resuming
with the next call.

To address these issues, the command decoder implements a mechanism for
multi-cycle commands. In the case of a single call requiring different actions in
subsequent clock cycles, the VHDL procedure is evaluated for more than one
clock cycle, and only if all steps are completed successfully, the OS synchroniza-
tion state machine transitions to the next state. Every multicycle VHDL API
procedure takes one additional argument, completed. This argument, imple-
mented as a VHDL variable, returns false as long as not all steps have been
completed. Only in the last step, completed is set to true, which then prompts
the state transition. Thus, a multicycle command induces additional state that
keeps track of the currently executing step of the command. This state is kept
by the OSIF and transmitted via the step signal inside the osif2task record
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Fig. 5. Multicycle command example.

to the VHDL procedure, which uses it to perform the appropriate function for
this step.

An example of this mechanism is depicted in Figure 5. Here, an OS call taking
two arguments and returning a third value is requested, requiring three steps
to complete. On entering state B of the OS synchronization state machine, the
hardware thread invokes the appropriate VHDL procedure, which transmits
the first (state B, Step 0) and second (state B, Step 1) argument. The OSIF
then blocks the thread’s OS synchronization state machine by setting the busy
and/or blocking signals and relays the OS call to the CPU, where the associated
delegate thread executes it. Upon returning from the software OS call, the
OSIF unblocks the hardware thread and passes the return value in state B,
Step 2, where it is stored by the same VHDL procedure that invoked the call.
Since Step 2 is the last step of this command, the completed variable is set,
prompting the OS synchronization state machine to enter state C, Step 0 in the
next clock cycle.

This mechanism is highly flexible and largely transparent to the thread de-
veloper. It does, however, require some additional VHDL code to check for the
completed variable (as shown in Listing 2).

4.1.2 OS Call Relaying. OS services that are not provided by the OSIF
directly (such as memory or FIFO accesses) are relayed to the OS kernel run-
ning on the CPU. Once the command decoder receives such a request from
the hardware thread, it places the command and associated arguments in
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software-accessible registers on the DCR bus, and raises an interrupt with the
CPU. This interrupt is forwarded to the software delegate thread associated
with the hardware thread (see Section 4.2), which retrieves the command and
arguments from the registers and executes the software OS call on behalf of the
hardware thread. Any return values are placed in the OSIF’s DCR registers,
which pass the values on to the hardware thread.

This mechanism provides maximum flexibility, since virtually every call that
is possible from a software thread can now be requested by a hardware thread
as well. However, OS call relaying comes with a considerable overhead, which
is quantified in Section 6.1. On every relayed OS call, the CPU needs to process
an interrupt, switch to the associated delegate’s context, and access the DCR
bus registers before actually executing the call. During this time, the hardware
thread’s OS synchronization state machine remains suspended. Nonetheless, it
must be noted that the parallel user processes inside the thread may continue
their execution.

4.1.3 Data Communication Routing. Due to the substantial overhead in-
volved in relaying OS requests to software, all high-throughput data commu-
nications should be handled in hardware without involving the CPU. In the
ReconOS OSIF, this is realized in two variants, which provide the basis for any
efficient, high-bandwidth thread-to-thread communication.

—Bus Master Access. By utilizing the OSIF’s PLB interface, a hardware thread
has direct access to any memory location and bus-connected peripheral in
the system. Using the bus master controller (see Figure 4), it is even possi-
ble to transfer bursts of data to and from memory. To request a burst write,
the hardware thread must first store the data to transfer in the thread-
local RAM. Then, the thread’s OS synchronization state machine calls a
reconos write burst() procedure. This prompts the bus master controller
to initiate a PLB bus transfer from the local RAM, which is mapped into
the system memory space, to the target address in main memory. Similarly,
a thread can request a burst read transaction, which will place data from
main memory in the local RAM.

—Hardware FIFOs. The bus access facilities provided by the OSIF permit
the hardware thread to achieve high data transfer rates to and from main
memory. While this mechanism represents an improvement over the indirect
communication methods provided by the OS call relay technique, their per-
formance can suffer considerably when several threads, the CPU, or other
peripherals contend for the bus.

To allow for bus-independent thread-to-thread data communication, the Re-
conOS run-time environment provides dedicated FIFO buffers implemented in
hardware. Two threads connected by such a FIFO module can transfer data
without interrupting the CPU or increasing bus load. When a hardware thread
signals a pending read or write access to such a FIFO, the OSIF’s command
decoder passes the request to the FIFO manager (see Figure 4), which controls
the handshake lines of the FIFO modules. In the event of a write request to
a full FIFO or a read request to an empty FIFO, the FIFO manager can also
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8:18 • E. Lübbers and M. Platzner

Fig. 6. Execution flow of a delegate thread.

suspend the hardware thread’s OS synchronization state machine, thus provid-
ing blocking get/put operations on FIFOs. Details on the performance of this
message passing mechanism can be found in Section 6.2.

4.2 Delegate Threads

A fundamental assumption of the ReconOS programming model concerns the
transparency of thread-to-thread communication and synchronization, regard-
less of the execution context (hardware or software) of the respective commu-
nication partners. This enables the designer to easily replace, for example,
a software thread with a functionally equivalent hardware thread, allow-
ing for rapid design space exploration with respect to the hardware/software
partitioning.

In ReconOS, every hardware thread is associated with exactly one software
thread, its delegate, to achieve this transparency. The delegate is responsible
for executing operating system calls on behalf of the corresponding hardware
thread, making it appear as a software thread to the operating system kernel.
Delegate threads are created as standard OS threads and passed additional
parameters necessary to access the OSIF hardware. After creation, the delegate
resets, initializes and starts the hardware thread. It then waits for an incoming
OS request from the hardware to execute. The basic execution flow of a delegate
thread is depicted in Figure 6.

To be able to map the OS objects referenced by the hardware thread to actual
instances in the operating system kernel, the delegate thread maintains a table
of object instances that are used by the hardware thread (see Section 3.4). Indi-
vidual resources are represented towards the hardware thread as an index into
this table. Hence, a single hardware thread description (i.e., VHDL source code,
netlist or possibly a relocatable bitstream) can be used for multiple instances
in the system; giving different instances access to different resources is simply
a matter of changing the delegate’s OS object table. This mechanism is also a
prerequisite for partial reconfiguration of hardware threads, which is planned
as a future extension.

5. IMPLEMENTING RECONOS

We have implemented the programming and execution models described in
Sections 3 and 4 on top of two wide-spread operating system kernels: eCos and
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Table III. Comparison eCos/Linux

Linux
eCos Linux nommu

virtual memory (requires MMU) no yes no

run-time loading of object code (spawning of new processes) no yes yes

real-time characterization of system functions yes partial1 partial2

user code has access to privileged instructions (executes in

supervisor mode)

yes no no

OS 
interface

hw 
thread

interrupt 
controller

memory 
controller

DRAM

PLB 
arbiter

eCos 
kernel

sw 
thread

CPU

readsw 
thread

other 
peripherals

OS 
interface

hw 
thread

OS 
interface

hw 
thread

memory bus (PLB)

OS control bus (DCR)

Fig. 7. ReconOS hardware architecture with three hardware threads.

Linux. In the following, we present the ReconOS hardware architecture and
the prototype systems. While eCos is designed primarily for embedded systems
with limited resources, Linux is targeted at a wider range of application areas
and target platforms. As a consequence, both systems provide a somewhat
disparate feature set, shown in Table III, which also influences the way our
programming model is implemented. Many differences, however, can be hidden
from the application programmer behind the POSIX API, which is supported by
both eCos and Linux. Since hardware threads are written with the separate Re-
conOS API that is similar to POSIX, we can run software and hardware threads
on both operating system kernels with little to no changes to the source code.

5.1 Hardware Architecture

The ReconOS hardware architecture, shown in Figure 7, is built on top of the
IBM CoreConnect bus topology available for Xilinx FPGAs. The basic system
architecture is independent from the employed host operating system, which
is executed in software on the system CPU.

Hardware threads are connected to the system via their OS interfaces, which,
in turn, are connected to the system’s buses. ReconOS systems employ two
different buses: the processor local bus (PLB) and the device control register
bus (DCR). The 64-bit PLB is used for high-throughput data transfers. Both

1Through third-party extensions (e.g., RTAI and RTLinux).
2In RTAI-68k-nommu.
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Table IV. ReconOS Prototype Implementations

Prototype (ReconOS/–) eCos-PPC Linux-PPC Linux-MicroBlaze

operating system eCos Linux Linux

based on kernel eCos-VIRTEX43 2.6-virtex4 2.6-nommu5

CPU PowerPC 405 PowerPC 405 MicroBlaze 4.0

FPGA XC2VP30 XC2VP30 XC4VSX35

CPU clock 300 MHz 300 MHz 100 MHz

PLB/DCR bus clock 100 MHz 100 MHz 100 MHz

MMU no yes no

the CPU cache subsystem and the hardware threads use it to access main
memory and system peripherals. All control communication between the OS
kernel on the CPU and the threads’ OS interfaces is routed across a separate
32-bit DCR bus. The separation of control and data communications provides
several benefits:

—OS control communications do not obstruct data communications on the
memory bus, thus reducing the PLB’s arbitration overhead and latency.

—Vice versa, memory communications, especially bursts, can not interfere with
OS communications. This reduces the latency of OS calls, which is paramount
to the use of ReconOS in real-time environments.

—OS interfaces for hardware threads that do not need direct access to sys-
tem memory can be synthesized without the PLB interface, thereby greatly
reducing the area footprint. Such threads are typical for many signal pro-
cessing applications that arrange filter stages in pipeline form, connected by
hardware FIFOs (see Section 4.1.3).

Based on the hardware architecture shown in Figure 7 and two OS ker-
nels, we have created three ReconOS prototypes: ReconOS/eCos-PPC and
ReconOS/Linux-PPC on a XC2VP30 FPGA, and ReconOS/Linux-MicroBlaze
on a XC4VSX35 FPGA. The main features of these prototypes are listed in
Table IV. External SDRAM is used for both the operating system and shared
thread memory. The prototypes also include I/O peripherals, such as serial
ports, Ethernet interfaces, and general-purpose I/O, all of which are managed
by the software operating system kernel. Both the OS interfaces and the hard-
ware threads run at the system’s bus clock, which is 100MHz for all prototypes.

A single OS interface requires 1,147 slices, which amounts to about
8.4%/7.5% of the logic resources of the employed XC2VP30 and XC4VSX35
FPGAs, respectively. Roughly two thirds of the OS interface slices are taken up
by the PLB bus interface, while the remaining logic is mainly used for the com-
mand decoder (267 slices) and the DCR bus interface (56 slices). The hardware
architecture has been assembled and synthesized using Xilinx ISE 9.1, Xilinx
EDK 9.1, and custom tools for automated OS interface and thread instantiation.

3Mind NV [2008]
4Secret Lab Technologies Ltd. [2008]
5PetaLogix [2007]
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Fig. 8. Communication between hardware thread and delegate thread.

5.2 ReconOS/eCos

The eCos [eCosCentric 2008] real-time operating system provides a modular
and configurable framework of operating system services. Application design-
ers can select the necessary packages from the eCos repository and compile
them into a library, which the final application is linked against. eCos is also
configurable on a source code level. Using preprocessor macros, unneeded code
is removed at compile time, resulting in small code sizes, which suits the tar-
geted embedded segment. eCos is written in C/C++ and supports a range of
target processor architectures, including the PowerPC 405, but not the Mi-
croBlaze soft core. Currently, this limits applying eCos to Xilinx FPGAs of the
Virtex-II Pro, Virtex-4 FX, and Virtex-5 FXT families.

To transparently include ReconOS delegate threads in the eCos program-
ming model, we have extended the eCos thread class to include additional in-
formation relevant to hardware threads, such as OSIF addresses, interrupt
numbers, and OS object tables. Together with C wrappers for thread creation
that are very similar to the eCos and POSIX API, reusing the existing kernel
code allows ReconOS delegate threads (and, by extension, the associated hard-
ware threads) to take advantage of all services provided by the eCos kernel.

Because eCos does not distinguish between user and kernel space but runs
entirely in the processor’s real mode, hardware access from user threads is
greatly simplified. Although the delegate thread is logically part of the user
application rather than the kernel, it can directly access the DCR bus to com-
municate with its corresponding OSIF. eCos also lets hardware and software
threads share the same address space, since it disables the MMU, sacrificing
memory protection and privilege management for a greatly simplified memory
access model and higher performance. While unreasonable for larger-scale mul-
tiuser systems, this is entirely appropriate for small-footprint self-contained
embedded systems, as targeted by eCos.

The sequence of events that is performed to relay an OS call from hardware
to the eCos kernel is shown in Figure 8(a). When a hardware thread uses a
VHDL API call to request an operating system service, the respective VHDL
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procedure asserts certain handshake lines between the thread and its OSIF (1).
Pending OS calls requested by the OSIF are signalled to the CPU’s interrupt
controller via a dedicated interrupt line (2). In eCos, interrupt processing is
split into two steps to minimize interrupt latency. First, a very small interrupt
service routine (ISR) is invoked (3), which executes in its own context, performs
the necessary operations to enable reception of the next interrupt as quickly
as possible, and marks the deferred service routine (DSR) (4) for execution. The
latter is scheduled by the regular eCos scheduler so as not to interfere with the
low-level interrupt processing. As the last step before the actual delegate thread
is invoked, the DSR posts a semaphore (5), which the delegate is waiting on,
essentially signaling an incoming request. The delegate thread then directly
accesses the OSIF’s registers via dedicated DCR access instructions to retrieve
call parameters (6) and executes the requested eCos kernel function. Section
6.1 evaluates the timing overhead of this OS call sequence.

5.3 ReconOS/Linux

The Linux operating system is employed on a wider range of target architec-
tures and, therefore, enjoys a wider adoption than eCos. The list of architec-
tures includes, as the most interesting to us, the PowerPC 405 and the Xilinx
MicroBlaze soft core. The latter widens the range of ReconOS targets to include
FPGAs without an embedded CPU core. The MicroBlaze can be synthesized
with or without an MMU. For our MicroBlaze prototype, we have opted for the
omission of the MMU, which simplifies memory transfers between software and
hardware threads.

While offering a wide set of configurable options, the Linux kernel does not
allow to reduce its memory footprint as much as the eCos kernel. Absolute
values on the size of the respective kernel images are difficult to obtain, as
the code size greatly depends on the selected features, the target architecture,
and the employed compiler. Also, an eCos kernel image already includes all
necessary API implementations, the libc, and possibly a network stack. It can
be expected, though, that a Linux kernel’s size exceeds an equivalent eCos
kernel by about an order of magnitude.

To communicate with its OSIF, a delegate thread needs access to the DCR
bus. On a PowerPC system, this is accomplished through the mtdcr and mfdcr
instructions, both of which are privileged. In Linux, user-space code, such as a
delegate thread, typically cannot execute privileged instructions. To make the
OSIF registers accessible to the delegate, we have thus implemented the low-
level hardware access to the OSIF registers in a kernel driver, which publishes
the registers through a device node, as depicted in Figure 8(b). The hardware-
independent code, such as the API wrappers and the delegate thread code, is
implemented through a library that is linked with the user application.

Due to the separation of hardware-dependent and independent code, the se-
quence of events to relay an OS call from hardware to the Linux kernel differs
from the one described for the eCos kernel. The signal assertions between hard-
ware thread and OSIF (1) and the interrupt request to the system’s interrupt
controller (2) are identical. When a delegate thread needs to access its OSIF,
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it does so through filesystem accesses to the kernel driver’s device node. In
eCos, synchronization between the delegate thread and the OSIF was achieved
through a dedicated semaphore. In Linux, this synchronization is implemented
through read accesses blocking until an interrupt from the OSIF is registered
(3). Only then is the blocking delegate thread resumed (4) and the read access
translated into DCR operations (5). Write operations to an OSIF do not block.
The timing overhead of this sequence is also analyzed in Section 6.1.

Data transfers between software and hardware threads are complicated by
the fact that Linux usually employs virtual memory. This means that blocks
of shared memory used to transfer data to or from hardware threads are not
necessarily contiguous. Then, hardware threads operate on physical addresses,
while software threads use virtual addresses that are translated by the MMU.
Moreover, it is not possible for user applications to flush or invalidate the proces-
sor’s caches in order to maintain cache coherency. Our current implementation
of ReconOS/Linux-PPC therefore, uses a separate, uncached memory buffer
that is advertised to the kernel as a memory mapped device. Section 7 out-
lines more transparent solutions that integrate more easily with the ReconOS
programming model.

6. EXPERIMENTAL RESULTS AND MEASUREMENTS

The ReconOS programming and execution models have been experimentally
verified using several prototypes based on the implementations described in
Section 5. In the following, we present quantitative performance results of op-
erations on operating system primitives on both host operating systems, which
provides valuable pointers on the costs and overheads involved with individual
thread interactions. Then, we discuss another set of experiments that has been
conducted to evaluate the throughput of the different communication mecha-
nisms available to ReconOS threads. Lastly, we focus on two more elaborate
application case studies to analyze the impact of the operating system over-
heads on real-world implementations. The results demonstrate the applica-
bility, feasibility, and portability of the proposed multithreaded programming
model.

6.1 Operating System Overheads

To enable quantitative measurements on the performance of operating system
calls, we have run a set of benchmarks on the three prototype implementa-
tions listed in Table IV. The first set of experiments employs a set of synthetic
threads analyzing the performance of timing critical OS calls. The mutex and
semaphore primitives from Table I serve as representative examples, as most
other supported API calls are either based on them or are not considered timing
critical.

The threads measure the raw execution time of single API calls to lock (un-
lock) a mutex or post (wait on) a semaphore, respectively, as well as a measure
we call the turnaround time. The turnaround time is defined as the time it takes
from one thread releasing a mutex (posting a semaphore), to the next thread
acquiring a lock (receiving the semaphore).
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8:24 • E. Lübbers and M. Platzner

Table V. Performance of ReconOS Synchronization Primitives

eCos/PPC Linux/PPC Linux/MicroBlaze

mutex (raw OS calls)
SW lock 83 821 9,178

SW unlock 171 551 9,179

HW lock 959 7,769 35,855

HW unlock 679 2,636 22,360

mutex (turnaround)
SW → SW 453 8,821 83,657

SW → HW 629 9,824 90,515

HW → SW 1,449 14,371 121,673

HW → HW 1,460 14,102 126,668

semaphore (raw OS calls)
SW post 73 598 13,180

HW post 695 1,972 22,116

semaphore (turnaround)
SW → SW 305 9,094 203,221

SW → HW 528 9,575 207,824

HW → SW 908 12,291 145,924

HW → HW 1,114 12,196 154,013

All values given in bus cycles (1 cycle = 10 ns).

The experiments have been run with different combinations of software and
hardware threads. The results are shown in Table V.

Synchronization operations on the eCos kernel behave as expected: Calls
from hardware are more expensive than their software counterparts due to the
additional interrupt processing and hardware accesses. The Linux implemen-
tations show a similar behavior but differ in certain details. Overall, OS calls
are significantly more expensive in a Linux kernel than in eCos; a fact which
can be attributed to context switches to and from kernel mode when executing
OS functions. On a PowerPC CPU running at the same speed, the Linux calls
take about an order of magnitude longer than the corresponding eCos calls.
Using a considerably less powerful MicroBlaze soft core processor clocked at a
third of the clock frequency, the execution times rise by another order of magni-
tude, except for one anomaly: Software-initiated semaphore operations exhibit
about twice the latencies that we expected. This effect can be observed only on
the Linux/MicroBlaze prototype and will be further investigated.

While the synchronization overhead incurred by the operating system is
not negligible, its impact on system performance remains within reasonable
bounds, as the application case studies in Section 6.3 will show.

6.2 Communication Primitives

In a second experiment, we have analyzed the attainable throughput for the
communication primitives available to ReconOS threads. Two threads perform
a sequence of data transfers, subsequently reading and writing data from and
to main memory, as well as reading and writing data from and to a mailbox.
Several configurations of the test have been run, using hardware and soft-
ware threads, and with mailboxes mapped either to hardware FIFOs or to eCos
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Fig. 9. Hardware architecture with a thread-to-thread FIFO.

software mailboxes. The throughput of ReconOS communication primitives for
hardware threads depends primarily on the specifics of the hardware architec-
ture (memory bus, hardware FIFOs), which is identical for the ReconOS/eCos
and ReconOS/Linux prototypes. For this test, the ReconOS/eCos prototype em-
ploying a PowerPC processor was selected.

Figure 9 shows the architecture used for testing the configuration with two
hardware threads and a hardware FIFO. The first hardware thread reads 8kB of
data from main memory into its local RAM. It then uses the ReconOS mailbox
calls to transfer this data to the hardware FIFO, one 32-bit word at a time.
Simultaneously, the second hardware thread reads from the hardware FIFO,
also by using the ReconOS mailbox API. Once this data transfer is completed,
the second thread writes the data back to main memory.

The hardware FIFOs are implemented as parametrizable IP cores that can
be easily instantiated and connected via the Xilinx EDK, or by the ReconOS
build system. To transfer one word of data to or from a FIFO, a hardware
thread needs three cycles. This includes all handshaking between hardware
thread and the OSIF’s command decoder as well as between the OSIF’s FIFO
manager and the FIFO core. The additional FIFO manager increases the OSIFs
area requirements only by 64 slices or 5%.

During the experiment, we have measured the times for reading and writing
the data from and to main memory, and the times for writing and reading the
data to and from the mailboxes. For comparison, we have also measured the
times for data transfer between hardware and software threads using ReconOS’
message queue primitives. Since software threads do not possess local memory,
the memory read/write tests for software threads have been combined into a
single memcopy test. The results are shown in Table VI.

While the hardware FIFOs only achieve 66% to 74% of the memory bus (PLB)
in terms of raw throughput, one has to keep in mind that in order to transfer
data from one thread to another, two memory transactions have to occur: First,
the sending thread needs to write to shared memory, before the receiving thread
can read the data. When using hardware FIFOs, reading and writing can occur
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Table VI. Performance of ReconOS Communication Primitives

With Data Cache Without Data Cache

Operation [μs] [MB/s] [μs] [MB/s]

MEM→HW (burst read) 45.74 170.80 46.41 168.34

HW→MEM (burst write) 40.54 192.71 40.55 192.66

MEM→SW→MEM (memcopy) 132.51 58.96 625.00 12.50

HW→HW (mailbox) 61.42 127.20 61.42 127.20

SW→HW (mailbox) 58,500 0.13 374,000 0.02

HW→SW (mailbox) 58,510 0.13 374,000 0.02

SW→HW (message queue) 472.00 16.55 2,166.79 3.61

HW→SW (message queue) 482.31 16.20 2,160.69 3.62

All operations were run for 8 kBytes of data.

concurrently. Considering this, an 8kB data transfer via hardware FIFOs is
about 40% faster than a transfer of the same data via shared memory. Also, the
transfer via mailboxes is implicitly synchronized, while two threads exchanging
data via shared memory need explicit synchronization, for example, via mutexes
or semaphores.

The previous figures show that for applications able to chain several hard-
ware threads together for data processing, the hardware FIFOs provide im-
proved performance and reduced bus load over shared memory. Importantly,
hardware FIFOs fully maintain transparency and flexibility using the ReconOS
programming model abstractions. For mailbox-based data transfers across the
hardware/software boundary, we currently use regular eCos software mailboxes
with data structures located in shared memory. It should be noted that mailbox-
based data transfer between hardware and software threads is thus rather in-
efficient. On the other hand, direct shared memory communication with several
orders of magnitude better performance comes at the cost of explicit synchro-
nization and cache coherency issues. A compromise between transparency and
performance is established by the ReconOS message queue primitives, which
map directly to POSIX message queues and hide the details of shared memory
access and explicit cache management from the user. In Section 7, we propose a
modification to our hardware FIFOs that will further alleviate the performance
bottleneck for synchronized communication across the HW/SW boundary.

6.3 Application Case Studies

To analyze the real-world implications of the ReconOS overheads on the overall
system performance and to demonstrate the feasibility of hardware/software
system design based on the ReconOS programming model, we present two more
elaborate case studies, a sorting and an image processing application.

6.3.1 Sorting Application. We have implemented a multithreaded sorting
algorithm with ReconOS and mapped it to different host operating systems and
underlying hardware architectures to demonstrate the portability of applica-
tions based on the ReconOS programming model. A list of 218 unsorted 32-bit
integers is sorted, using a combination of bubble sort and merge sort; the basic
concept is depicted in Figure 10. First, the data is divided into 128 chunks, which
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Fig. 10. Sort case study.

are sorted individually using bubble sort. The resulting lists are then merged.
To map this application onto our system, we divided it into two threads, one for
the bubble sort routine, which has a software and a hardware implementation,
and one for the merge operation, which is always performed in software. The
threads communicate using shared memory and use message boxes for simul-
taneous synchronization and passing of buffer addresses. The application has
been run on two prototype platforms, one running ReconOS/eCos on a PowerPC,
the other running ReconOS/Linux on a MicroBlaze. Both systems use exactly
the same application code for both software and hardware threads. Three tests
have been performed: the first running the sort thread in software (SW); the
second running the sort thread in hardware (HW); and the third running two
sort threads concurrently, one in software, the other in hardware (SW+HW).
The results of the measurements are shown in Figure 10. In this figure, two
times are given for each test and architecture, the first (bold) value denotes the
time spent sorting, while the second corresponds to the merge time.

The first and last test, which perform (at least part of) the sorting routine
in software, reveal, unsurprisingly, that the MicroBlaze processor performs the
sort operation vastly slower than the PowerPC. However, when executing the
sorting thread solely in hardware, both systems are almost on par. In this sit-
uation, the hardware thread interacts with the OS synchronization primitives
infrequently enough so that the performance penalty due to additional soft-
ware processing remains within acceptable limits. This is a typical scenario: An
application designer will likely use the precious hardware resources for data-
centric computations with relatively infrequent OS synchronization operations
and perform most control-dominated tasks inside software threads. Therefore,
while the penalty incurred by the low-level synchronization and communica-
tion between delegate thread and OS interface is substantial for OS calls alone,
the effect on overall application performance is marginal.

6.3.2 Image Processing Application. A second application running on the
ReconOS/eCos prototype demonstrates the iterative design approach made
possible by the multithreaded programming model. Here, the transparent
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Fig. 11. Image-processing application.

interthread communication and synchronization regardless of the actual execu-
tion context facilitates design-space exploration. In this application, grayscale
image data is acquired from a web cam and streamed into the embedded target
system through Ethernet, using a TCP/IP stack running on eCos. The image
data is then run through a convolution filter (in this case, a w × w Laplacian
edge detection kernel), and subsequently copied to a framebuffer for display
on an external monitor. The application consists of three threads: a capture, a
filter, and a display thread, as depicted in Figure 11. Data is passed between
the threads through shared memory, while semaphores synchronize access to
the memory.

The application was first implemented and tested purely in software, where
all three threads are scheduled in sequence, as shown in Figure 12(a). Then, as
a first try at optimization, we have coded the Laplacian in VHDL and turned
it into a hardware thread. Convolution filters are amenable to parallelization,
which promises a considerable performance boost if the filter thread is moved
to hardware.

Table VII lists the execution times in ms per frame for the different threads
and Laplacian kernel sizes, excluding any overhead due to OS calls. It can be
seen that the hardware filter thread outperforms its software counterpart by a
factor of 3.98 and 11.42 for a 3×3 and 5×5 kernel, respectively. If we execute all
three threads in sequence, as shown in Figure 12(b), the theoretical speed-up
for this configuration amounts to 1.4 for a 3 × 3 filter, and 2.7 for a 5 × 5 filter.
In practice, these speed-ups will not be reached due to the overhead of the OS.

Although, at this point, the application utilizes the FPGAs fine-grained
parallelism by performing the convolution filter in hardware, the potential of
thread-level parallelism is not yet exploited. Therefore, the next optimization
step has been to implement the display thread, which postprocesses the filtered
image for display, in hardware. Because the display and capture threads can
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Fig. 12. Thread-level parallelism for different configurations of the image processing application.

Table VII. Raw Execution Times [ms/Frame]

Thread Software Hardware

capture 16.0 —

filter 3 × 3 23.9 6.0

filter 5 × 5 86.6 7.6

display 22.5 3.1

now be run in different execution contexts (CPU and FPGA), they do not have
to be executed in sequence anymore, which is shown in Figure 12(c). To further
improve the thread-level parallelism, double buffering of the image data has
been introduced. This allows all three threads to run truly concurrently and is
depicted in Figure 12(d).

The image processing application has been run with differently sized blocks
of data. Larger block sizes reduce the system call overhead for semaphore syn-
chronization, but require more shared memory. Table VIII lists the resulting
performance figures in frames per second for different Laplacian kernel sizes
and software and hardware thread configurations. The configuration column
indicates whether the threads (capture—laplace—display) have been run in
software or hardware—the letters in parenthesis correspond to the configura-
tions shown in Figure 12. For the SW-HW-HW* configurations, double-buffering
has been enabled.

We observe that by switching from a 3 × 3 to a 5 × 5 Laplacian kernel the
software filter’s performance drops dramatically while the hardware filter can
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Table VIII. System Performance in [Frames/s]

Block Size [image lines]

w Configuration 4 8 20 40 80

SW-SW-SW (a) 14.4 (1.00) 15.5 (1.00) 16.1 (1.00) 16.2 (1.00) 16.3 (1.00)

SW-HW-SW (b) 15.5 (1.08) 17.6 (1.14) 18.6 (1.16) 19.0 (1.17) 18.9 (1.16)
3

SW-HW-HW (c) 23.5 (1.45) 23.4 (1.44)

SW-HW-HW* (d) 25.5 (1.57) 25.2 (1.55)

SW-SW-SW (a) 8.1 (1.00) 8.3 (1.00) 8.5 (1.00) 8.5 (1.00) 8.5 (1.00)

SW-HW-SW (b) 15.3 (1.89) 17.0 (2.05) 18.4 (2.16) 18.6 (2.19) 18.6 (2.19)
5

SW-HW-HW (c) 23.2 (2.73) 23.0 (2.71)

SW-HW-HW* (d) 25.4 (2.99) 25.1 (2.95)

Figures in parenthesis denote relative speed-ups.

exploit more fine-grained parallelism and delivers an almost constant perfor-
mance. Also, we see that the resulting overall speed-ups of the sequential
(SW-HW-SW) configuration (marked in bold) are quite close to the theoreti-
cally achievable speed-ups of 1.4 and 2.7 mentioned earlier. This points to an
acceptable overhead of the ReconOS system calls.

Naturally, the performance of the application could be further improved by
additional low-level optimizations. However, the case study serves to demon-
strate that by moving data-intensive threads to hardware while maintaining
the underlying programming model—and thus making changes to the remain-
ing parts of the system unnecessary—appealing performance increases can be
achieved.

7. CONCLUSION AND OUTLOOK

The increasing complexity of reconfigurable platforms calls for novel ap-
proaches to model and implement both software and hardware parts of an
application in a portable and scalable way. ReconOS offers such a way by ex-
tending the multithreaded programming model from its established software
domain toward reconfigurable circuits, creating a common abstraction layer
for both software and hardware. A common set of communication and synchro-
nization primitives is made available to both software and hardware threads
in order to leverage the full potential of today’s reconfigurable computers
while retaining portability across different hardware and software execution
platforms.

In this article, we have detailed the ReconOS programming model, as well
as its execution environment. Then, we have shown prototype implementa-
tions running on different host operating systems and hardware platforms.
Finally, we have analyzed and discussed experimental measurements on OS
call overheads and communication performance and have demonstrated the
applicability of our approach on two more elaborate case studies.

Ongoing and future work focuses on three main aspects:

—Partial Reconfiguration. While in our current ReconOS prototypes hardware
threads are statically configured, the partial reconfiguration capabilities of
modern Xilinx FPGAs allow for dynamic loading. We are working on the
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integration of these mechanisms into our run-time environment to enable
ReconOS to replace inactive or terminated hardware threads with active
ones and thus increase resource utilization. This involves a supporting hard-
ware infrastructure, which is already in place, as well as the investigation
of suitable scheduling techniques. We plan to leverage our existing work on
scheduling (see Danne et al. [2006, 2007]) and extend the host operating
system’s schedulers to deal with loadable hardware threads.

—Communication Primitives. While the existing set of operating system ob-
jects is sufficient to model the thread interactions of quite complex mul-
tithreaded applications, we see potential for improvement especially with
the performance-sensitive communication services. The performance ben-
efits of hardware FIFOs for message-based communication, as detailed in
Section 4.1.3, will be extended also to data exchanges across the hardware/
software boundary. We are currently investigating an extension to the hard-
ware FIFOs that allows hardware threads not directly adjacent to a particu-
lar FIFO as well as software threads running on the CPU to access the FIFO.
Such hardware FIFOs will further reduce contention on the memory bus and
CPU load, which is currently impeding performance of hardware-software
communication using message boxes.

—Virtual Memory. As mentioned in Section 5.3, communication between hard-
ware and software threads can be significantly complicated if the host oper-
ating system uses virtual memory. In the presence of virtual memory, we see
three ways to implement shared memory as a means to communicate across
the hardware/software boundary: (a) by using a separate, uncached memory
buffer, which is advertized to the kernel as a memory mapped device; (b) by
allocating a contiguous buffer of kernel memory via kmalloc(), mapping it
into user space, and providing hardware threads with its physical address;
or (c) by providing every OSIF with a small-scale MMU, which mirrors the
CPU’s TLB, similar to Vuletic et al. [2005]. The first two options require a
separate device driver and are currently being investigated. The third ap-
proach bears the biggest complexity but also provides a transparent memory
access model and will be the target of future research.
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VULETIĆ, M., POZZI, L., AND IENNE, P. 2005. Seamless hardware-software integration in reconfig-

urable computing systems. Des. Test Comput. IEEE 22, 2, 102–113.

WALDER, H. AND PLATZNER, M. 2003. Reconfigurable hardware operating systems: From design

concepts to realizations. In Proceedings of the 3rd International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA’03). CSREA Press, 284–287.

WIGLEY, G. AND KEARNEY, D. 2001. The Development of an operating system for reconfigurable

computing. In Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM’01). IEEE, Los Alamitos, CA.

WILLIAMS, J. A., BERGMANN, N. W., AND XIE, X. 2005. FIFO communication models in operating

systems for reconfigurable computing. In Proceedings of the 13th IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’05). IEEE, Los Alamitos, CA, 277–278.

WIND RIVER. 2007. VxWorks 6.x. http://www.windriver.com/products/run-time technologies/Real-

Time Operating Systems/VxWorks 6x/

XIE, X., WILLIAMS, J., AND BERGMANN, N. 2007. Asymmetric multi-processor architecture for recon-

figurable system-on-chip and operating system abstractions. In Proceedings for the International
Conference on Field-Programmable Technology (ICFPT’07). IEEE, Los Alamitos, CA, 41–48.

Received June 2008; revised January 2009; accepted February 2009

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 1, Article 8, Publication date: October 2009.


