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Motivation 
 partial reconfiguration enables time-sharing of 

reconfigurable hardware resources
 hardware threads, as implemented by ReconOS, provide 

partitioning of an application into suitable modules for 
hardware multitasking

 non-preemptive multitasking techniques are unsuitable 
for many applications
 long-running threads may make system unresponsive
 asynchronous (i.e. blocking) operations must be 

registered with an event loop via callback functions

 preemptive multitasking faces substantial challenges 
when applied to partially reconfigurable devices
 determining and accessing the relevant context of a 

hardware module is a complex task
 readback or scan chain techniques involve significant 

overheads and are often device-dependent

ReconOS Execution Model
 OS interface module (OSIF) enables transparent 

communication and synchronization between 
hardware and software

 OS calls from hardware are relayed to delegate 
threads running on the system‘s CPU

 HW multitasking through partial reconfiguration
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Cooperative Multitasking

 in ReconOS, cooperative multitasking is only 
employed for HW threads; SW threads are 
scheduled preemptively

 the task of managing the reconfigurable 
resources is shared between two software 
threads
 a hardware thread‘s delegate thread and a 

high-priority hardware scheduler thread
 no changes to the OS kernel are necessary

 a synthesized hardware circuit representing a 
thread‘s functionality is called a core

 for every slot in the system, a core is placed 
and routed, resulting in nslots × ncores partial 
bitstreams

 data structures modeling the relationships 
between slots, hardware threads, cores, and 
bitstreams are shared between the delegates 
and the hardware scheduler 

Approach
 threads can voluntarily relinquish (yield()) 

their execution slot
 threads are responsible for saving and 

restoring their state on yield or resume
 ideally, threads yield on blocking OS calls, 

during which they would not perform any 
computations

ReconOS Programming Model
similar to existing APIs

  eCos
 POSIX

OS services
 task management
 memory management
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 communication

OS objects
 tasks (HW or SW)
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Outlook / Future Work
 efficient scheduling algorithms for a cooperatively multitasking subset of hardware threads in a 

preemptively scheduled multithreaded software system
 improved reconfiguration infrastructure to decrease reconfiguration overhead
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Experimental Results
 timing overheads of individual OS operations

thread initialization 1.76 ms
thread suspend 93.12 µs
thread resume 192.32 µs
state save (4096 bytes) 37.51 µs (104.1 MB/s)
state restore (4096 bytes) 45.19 µs (86.4 MB/s)
reconfiguration time (233 kBytes) 99.96 ms

A B

A BA

tA0 tblock tA1

tA0 tA1tl tblock

A
B

A

tl

tA0 tA1

tB

tl tblock tl

tB

tl tB

(a)

(b)

(c)

Scheduling Example
 (a) consider two threads, A and B

 thread A runs for tA0, blocks for tblock, and 
then runs again for tA1

 thread B simply runs for tB

 loading a thread onto the FPGA takes tl

 (b) with non-preemptive multitasking, 
threads A and B are executed 
consecutively, with a total run time

     Tn(A, B) = 2tl + tA0 + tA1 + tblock + tB

 (c) with cooperative multitasking, thread A 
can yield its execution slot to thread B 
while blocking (i.e. on an OS call), 
resulting in an execution time of

       Tc(A, B) = 2tl + tA0 + tA1 + tAs + tAr +
                        max(tblock, tl + tB)

tAs and tAr are the times to save and restore 
A‘s state, respectively.

 Thus, the cooperative multitasking approach reduces 
the total run-time, provided that both

     tB > tAs + tAr         and       tblock > tAs + tAr + tl

Implementation in ReconOS
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 application execution time of a prototype implementation of 
the scheduling example
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