
Paul Kaufmann, Marco Platzner, MAPLD 2006

FPL 2009, 01.09.2009

Department of Computer Science
Computer Engineering Group
www.upb.de/cs/ag-platzner

Motivation
 partial reconfiguration enables time-sharing of

reconfigurable hardware resources
 hardware threads, as implemented by ReconOS, provide

partitioning of an application into suitable modules for
hardware multitasking

 non-preemptive multitasking techniques are unsuitable
for many applications
 long-running threads may make system unresponsive
 asynchronous (i.e. blocking) operations must be

registered with an event loop via callback functions

 preemptive multitasking faces substantial challenges
when applied to partially reconfigurable devices
 determining and accessing the relevant context of a

hardware module is a complex task
 readback or scan chain techniques involve significant

overheads and are often device-dependent

ReconOS Execution Model
 OS interface module (OSIF) enables transparent

communication and synchronization between
hardware and software

 OS calls from hardware are relayed to delegate
threads running on the system‘s CPU

 HW multitasking through partial reconfiguration

Cooperative Multithreading in Dynamically
Reconfigurable Systems

Enno Lübbers, Marco Platzner

Cooperative Multitasking

 in ReconOS, cooperative multitasking is only
employed for HW threads; SW threads are
scheduled preemptively

 the task of managing the reconfigurable
resources is shared between two software
threads
 a hardware thread‘s delegate thread and a

high-priority hardware scheduler thread
 no changes to the OS kernel are necessary

 a synthesized hardware circuit representing a
thread‘s functionality is called a core

 for every slot in the system, a core is placed
and routed, resulting in nslots × ncores partial
bitstreams

 data structures modeling the relationships
between slots, hardware threads, cores, and
bitstreams are shared between the delegates
and the hardware scheduler

Approach
 threads can voluntarily relinquish (yield())

their execution slot
 threads are responsible for saving and

restoring their state on yield or resume
 ideally, threads yield on blocking OS calls,

during which they would not perform any
computations

ReconOS Programming Model
similar to existing APIs

 eCos
 POSIX

OS services
 task management
 memory management
 synchronization
 communication

OS objects
 tasks (HW or SW)
 shared memory
 semaphores
 queues/FIFOs
 timers
 signals
 ...

Timer

Task
Signal

FIFO
Shared
Memory

Task Task
Semaphore

Software

r2 = 0x63b64fa3
r3 = 0x004feb66

pc = 0x000cdb43

Hardware

Outlook / Future Work
 efficient scheduling algorithms for a cooperatively multitasking subset of hardware threads in a

preemptively scheduled multithreaded software system
 improved reconfiguration infrastructure to decrease reconfiguration overhead

CPU

bus
arbiter

OSIF

hw thread

bus macro

reconfigurable area

system bus

memory
controller

DRAMICAP

OSIF

bus macro

en en

slot slot

hw thread

wait for
signal

find
waiting Tr

find free
Sf

find
yielding Ty

request
yield

configure
Tr into Sf

wake up
threads

found in Sffound

not
found

not
found

found

not found

cancel yield
request

save Ty's

state

initialize

wait for HW
request

read request
from HW

execute
call

write return
value to HW

yielding
call ?

mark as
yielding

Y

HW
present?

clear yielding
flag

mark as
waiting

Y

N

N

wake up
scheduler

wake up
scheduler

yielding
call?

Y

N

restore
state

init HW
mark as
waiting

wake up
scheduler

wait for
reconfiguration

wait for
reconfiguration

hardware access synchronized blocking

delegate thread

hardware scheduler

References
 E. Lübbers and M. Platzner, „Multithreaded Programming for Reconfigurable Computers,“ ACM

Transactions on Embedded Computing Systems (TECS), 2009, to appear
 E. Lübbers and M. Platzner, „ReconOS: An RTOS supporting Hard- and Software Threads,“ in 17th

IEEE International Conference on Field Programmable Logic and Applications (FPL), 2007

Experimental Results
 timing overheads of individual OS operations

thread initialization 1.76 ms
thread suspend 93.12 µs
thread resume 192.32 µs
state save (4096 bytes) 37.51 µs (104.1 MB/s)
state restore (4096 bytes) 45.19 µs (86.4 MB/s)
reconfiguration time (233 kBytes) 99.96 ms

A B

A BA

tA0 tblock tA1

tA0 tA1tl tblock

A
B

A

tl

tA0 tA1

tB

tl tblock tl

tB

tl tB

(a)

(b)

(c)

Scheduling Example
 (a) consider two threads, A and B

 thread A runs for tA0, blocks for tblock, and
then runs again for tA1

 thread B simply runs for tB

 loading a thread onto the FPGA takes tl

 (b) with non-preemptive multitasking,
threads A and B are executed
consecutively, with a total run time

 Tn(A, B) = 2tl + tA0 + tA1 + tblock + tB

 (c) with cooperative multitasking, thread A
can yield its execution slot to thread B
while blocking (i.e. on an OS call),
resulting in an execution time of

 Tc(A, B) = 2tl + tA0 + tA1 + tAs + tAr +
 max(tblock, tl + tB)

tAs and tAr are the times to save and restore
A‘s state, respectively.

 Thus, the cooperative multitasking approach reduces
the total run-time, provided that both

 tB > tAs + tAr and tblock > tAs + tAr + tl

Implementation in ReconOS

Enno Lübbers
Computer Engineering Group
University of Paderborn

Contact

enno.luebbers@uni-paderborn.de
+49 5251 605397
http://tr.im/luebbers

 application execution time of a prototype implementation of
the scheduling example

tblock
tl

0 0.5 1 2 3 4 5 6 7 8 9

tB
tl

0

1

2

3

4

5

0.75

1.00

1.25

1.50

Tn
Tc

http://tr.im/luebbers
http://tr.im/luebbers

