Communication and Synchronization
in Multithreaded Reconfigurable

Computing Systems

Enno Lubbers and Marco Platzner
Computer Engineering Group
University of Paderborn

{enno.luebbers, platzner}Qupb.de

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Design of CPU/FPGA Systems

® hardware accelerators typically integrated as slave
COProcessors

® hardware/software boundary explicit
= tedious to program
= portability issues

_

software
application

J

E.LUbbers & M.Platzner, University of Paderborn

_

hardware

~

accelerator d

ERSA ‘08

Design of CPU/FPGA Systems

® hardware accelerators typically integrated as slave
COProcessors

® hardware/software boundary explicit
= tedious to program
= portability issues

>
software hardware

application accelerator
|/]

o L/

driver register — register

FPGA

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

“ h

application

- /

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

th read\ /th read @ @

thread

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

th read\ /thread @ @

thread

operating system

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

thread thread thread thread

softwa§ software hardware hardware
ftw

operating system

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

software software hardware hardware
thread F thread thread thread

OS kernel

N

OS
Interface

/

E.LUbbers & M.Platzner, University of Paderborn

-

OS
Interface

v

FPGA

ERSA ‘08

Multithreaded Programming

software software
thread thread
ftw

th readJ

hardware
thread

OS kernel

N

OS
Interface

/

CPU

E.LUbbers & M.Platzner, University of Paderborn

hardware
thread

-

OS
Interface

/

FPGA

ERSA ‘08

Multithreaded Programming

® communication and synchronization

software software
thread thread
ftw

Kth readJ

hardware
thread

OS kernel

N

OS
Interface

/

CPU

E.LUbbers & M.Platzner, University of Paderborn

hardware
thread

-

OS
interface

/

FPGA

ERSA ‘08

Multithreaded Programming

® communication and synchronization
= high-level (between the threads themselves)

software software
thread thread
ftw

|

_thrcad /

OS kernel

hardware
thread

CPU

E.LUbbers & M.Platzner, University of Paderborn

N

OS
Interface

/

hardware
thread

\

OS
interface

/

FPGA

ERSA ‘08

Multithreaded Programming

® communication and synchronization
= high-level (between the threads themselves)
= low-level (between hardware threads and operating system)

oftware software hardware
thread . thread thread

_thrcad /

|

OS kernel

N

OS
Interface

/

CPU

E.LUbbers & M.Platzner, University of Paderborn

\

hardware
thread

OS
interface

/

FPGA

ERSA ‘08

Outline

® high-level communication and synchronization

® low-level communication and synchronization

= performance & overheads

® conclusion & outlook

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Programming Model

THREAD_A

= applications are
. . . hared 4
divided into threads —> | > rﬁefnrﬁry |

= threads communicate "
via operating system SEM_NEW
objects
= semaphores

= mailboxes
= shared memory L |

SEM_READY

L

MBOX_IN2 \/ MBOX_DATA \/ MBOX_OUT

" .. THREAD_B THREAD_C

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Programming Model

THREAD_A

= applications are
. . . ‘ hared
divided into threads — | g TN

. MBOX_IN1 |
® threads communicate - \-«‘//

via operating system SEM_NEW
objects

= semaphores

= mailboxes

= shared memory

SEM_READY

MBOX_IN2 MBOX_DATA MBOX_OUT
" .. THREAD_B THREAD_C

examples for API functions used by threads

software (POSIX, C) hardware (ReconOS, VHDL)

sem post () reconos sem post ()

pthread mutex lock() reconos mutex lock ()
mg send () reconos mbox put ()

value = *ptr reconos read()

pthread exit () reconos thread exit ()

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

High-Level Synchronization in ReconOS

N Semaphores (Thread A) (Thread B)

= general mechanism to synchronize execution

= blocking wait() operation, non-blocking post() ,
operation '

= supported by both hardware and software threads ‘

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

High-Level Synchronization in ReconOS

H Semaphores (Thread A) (Thread B

= blocking wait() operation, non-blocking post()
operation

= supported by both hardware and software threads ‘

= general mechanism to synchronize execution

® mutexes (Thread A) [Thread B

= supported by both hardware and software threads

= specific mechanism to protect critical sections
(e.g. read-modify-write to shared memory)
= a thread can only release a mutex it “owns” (has
previously locked) @

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

High-Level Synchronization in ReconOS

(Thread A) (Thread B)

® semaphores
= general mechanism to synchronize execution

= blocking wait() operation, non-blocking post()
operation

= supported by both hardware and software threads

® mutexes

= specific mechanism to protect critical sections
(e.g. read-modify-write to shared memory)

= a thread can only release a mutex it “owns” (has
previously locked)

= supported by both hardware and software threads

® thread termination
= a thread can block until another thread exits

= currently, only software threads can join(), but all
threads can exit()

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

[Thread A) [Thread B)

(Treadn) (TeadB)

High-Level Communication in ReconOS

(Thread A) (Thread B)

® shared memory

= all threads have direct access to the entire
memory space

= accesses need to be synchronized using
semaphores or mutexes

= dedicated hardware support for burst
transfers

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

High-Level Communication in ReconOS

(Thread A) (Thread B)

® shared memory

= all threads have direct access to the entire
memory space

= accesses need to be synchronized using
semaphores or mutexes

= dedicated hardware support for burst
transfers

¥ message queues
= can block if queue is empty / full

= combined communication and
synchronization primitive

= supported by both hardware and software
threads

= dedicated hardware FIFOs for hardware
threads

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

(Thread A) (Thread B)

message queue

Outline

® low-level communication and synchronization

= performance & overheads

® conclusion & outlook

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Architecture

= developed on Xilinx Virtex-Il Pro, Virtex-4 FX FPGAs
= based on CoreConnect bus topology
= OS kernel is eCos for PowerPC ported to Virtex

- - /0 controller Cmoﬁ;?;gr <|‘:|,> %X;renrgal
CPU ry
OS
kernel
system buses (PLB, DCR)

T

interrupt
controller

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Architecture

= developed on Xilinx Virtex-Il Pro, Virtex-4 FX FPGAs
= based on CoreConnect bus topology
= OS kernel is eCos for PowerPC ported to Virtex

I/O controller MENE external
‘CPU .\ controller memory
OS

4 Kkernel é @
g @ system buses (PLB, DCR)

thread
software
thread
T J

interrupt
controller

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Architecture

= developed on Xilinx Virtex-Il Pro, Virtex-4 FX FPGAs
= based on CoreConnect bus topology
= OS kernel is eCos for PowerPC ported to Virtex

P a {I/O controller} L Cmoﬁ?;gr }< > ;enxet(rerrgz
CPU
~ kernel
ssr:’;\;v @ @ system buses (PLB, DCR)

ar
ad
thread
T J
interrupt
controller

hardware hardware hardware
thread thread thread

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Architecture

® developed on Xilinx Virtex-ll Pro, Virtex-4 FX FPGAs
= based on CoreConnect bus topology
= OS kernel is eCos for PowerPC ported to Virtex

P a [I/O controller} L Crgﬁ?;gr }< > %X;renrggl
CPU
~ kernel
ssr:‘:\év @ @ system buses (PLB, DCR)

OS interface OS interface OS interface

ar
ad
U I
thread
T 4

mtetrrulf)t
controller «—

hardware hardware hardware
thread thread thread

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Thread

~- hardware thread

OS synchronization state machine

done ='0"/
run <= '1'

/

N run <= '0'
/ shm_write()

‘ /
@ transitions occur only when
OS interface is ready

done

OS Interface

user logic

-_—ee o e e e e o o e e e e o o e e e e o o e e = = =

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Thread

® a hardware thread consists of two parts

~- hardware thread

OS synchronization state machine

done = '0'/
run <=" / shm_read()

\

1

/

N run <= '0'
/ shm_write()

‘ /
@ transitions occur only when
OS interface is ready

done

OS Interface

user logic

-_—ee o e e e e o o e e e e o o e e e e o o e e = = =

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Thread

® a hardware thread consists of two parts

= an OS synchronization state machine - hardware thread

® synchronizes thread with
operating system calls

® serializes access to OS
objects via the OS interface

® can be blocked by the
OS interface

E.LUbbers & M.Platzner, University of Paderborn

OS synchronization state machine

done = 0/
run <=" / shm_read()

\

1

\
&~
@ transitions occur only when
OS interface is ready

done

OS Interface

user logic

ERSA ‘08

\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Hardware Thread
® a hardware thread consists of two parts

= an OS synchronization state machine - hardware thread

. . OS synchronization state machine
® synchronizes thread with
operating system calls

® serializes access to OS
objects via the OS interface ‘:ﬁﬂ‘: o\ 7enmirane

® can be blocked by the _osl N P

OS interface @

= parallel “user processes” -
e communicate with OS S Inaracaiar A

synchronization state machine

® can directly access local
memory blocks

® are not necessarily blocked

done

user logic

\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

ReconOS API for Hardware Threads

R O S

osif_fsm: process(clk, reset)
begin
if (reset = '1’) then
state <= IDLE;
run <= '0°;
|reconos reset|(o_osif, i_osif);
elsif rising_edge(clk) then
|reconos_begin(o_osif, i_osif);
if| reconos_ready|(i_osif) then
case stafe Is
when IDLE =>
| reconos_sem_wait/(o_osif , i_osif , CSEMA);
state <= READ;

when READ =>

l[reconos_shm_read_burst| o_osif, i_osif,
local_ address
global_ address);

state <= RUN;

when RUN =>
run <= '17;
if done = 1’ then
run <= '07;
state <= WRITE;
end if;

when WRITE =>

Ireconos shm_write._ burstl(o osif, i_osif,
local_ address
global_address);

state <= POST;
when POST =>

| reconos_sem. gos {o osif, i_osif, C.SEMB);
state <= ’

when others => null;
end case;
end if;
end if;
end process;

E.LUbbers & M.Platzner, University of Paderborn

OS Interface

= VVHDL function library
= used similar to software API

= may only be used inside OS
synchronization state machine

~- hardware thread

OS synchronization state machine

/ sem_wait
(C_SEM_A)

done ="'0"
run <=1
-\
N

|
,‘i

done=""/

run <= '0' -7

|
I / shm_read()

/ shm_write()

transitions occur only when
OS interface is ready

user logic

ERSA ‘08

- e e e e e e e e e e e e e e = e e = e o e = e - e = = = e = = - = = = e = = = = =

OS Interface

E.LUbbers & M.Platzner, University of Paderborn

64 bit PLB (memory bus)

32 Bit DCR (control bus)

T

PLB slave bus
master

attachment
controller

Vo

to interrupt

command decoder
controller

“ e

hardware thread

ERSA ‘08

:

aoevlul SO

~——

DCR slave
attachment

FIFO
manager

to/from other threads

OS Interface

B processes requests from
hardware thread

= handles blocking and resuming of
hardware thread

E.LUbbers & M.Platzner, University of Paderborn

64 bit PLB (memory bus) 32 Bit DCR (control bus)

T

~—— ~——

PLB slave bus DCR slave

attachment TERIEr attachment
controller

; /{

:

aoevlul SO

to interrupt

command decoder manager
controller

“ e

hardware thread

to/from other threads

ERSA ‘08

OS Interface

B processes requests from
hardware thread

= handles blocking and resuming of
hardware thread

® relays OS object interactions to
CPU

= DCR interface with bus-addressable
registers

= dedicated interrupt

E.LUbbers & M.Platzner, University of Paderborn

64 bit PLB (memory bus)

32 Bit DCR (control bus)

T

PLB slave
attachment

master
attachment
controller

il

bus DCR slave }

;

aoevlul SO

to interrupt
controller

command decoder

manager

¢ /{

ERSA ‘08

| T
hardware thread

to/from other threads

OS Interface

B processes requests from
hardware thread 64 bit PLB (memory bus) 32 Bit DCR (control bus)

= handles blocking and resuming of % E)
hardware thread > —
{ PLB slave mt;l;fer DCR slave}

attachment attachment

il

aoevlul SO

® relays OS object interactions to controller
CPU ¢ ¢

= DCR interface with bus-addressable to interrupt
registers controller

= dedicated interrupt

command decoder manager

{ FIFO

B executes memory accesses

= PLB master interface

= direct access to entire system’s
address space (memory and
peripherals)

| T
hardware thread

to/from other threads

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

OS Interface

B processes requests from
hardware thread 64 bit PLB (memory bus) 32 Bit DCR (control bus)

= handles blocking and resuming of y = B) = B "
hardware thread { = _= = _=

PLB slave mt;l;fer DCR slave
attachment attachment

® relays OS object interactions to controller
CPU ¢ ¢

= DCR interface with bus-addressable to interrupt
registers controller

= dedicated interrupt

aoeLIdulI SO

{ FIFO

command decoder manager

B executes memory aCCesses
= PLB master interface

= direct access to entire system’s
address space (memory and
peripherals)

® dedicated FIFO channels “ E ﬁ

= provide high-throughput hardware hardware thread
support for message passing to/from other threads

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Delegate Threads

delegate
thread

software
‘ hw thread

V

RTOS kernel

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Delegate Threads

® basic mechanism

= a delegate thread in software is associated with every hardware thread
= the delegate thread calls the OS kernel on behalf of the hardware thread
= all kernel responses are relayed back to the hardware thread

(

V

delegate
thread y

software
. thread

RTOS kernel

th thread

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Delegate Threads

® basic mechanism

= a delegate thread in software is associated with every hardware thread
= the delegate thread calls the OS kernel on behalf of the hardware thread
= all kernel responses are relayed back to the hardware thread

® advantages
= no modification of the kernel required
= extremely flexible

= transparent to kernel and

other threads

(

V

delegate
thread

software
. thread

RTOS kernel

th thread

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Delegate Threads

® pbasic mechanism
= a delegate thread in software is associated with every hardware thread
= the delegate thread calls the OS kernel on behalf of the hardware thread
= all kernel responses are relayed back to the hardware thread

® advantages
= no modification of the kernel required
= extremely flexible

= transparent to kernel and
other threads

delegate
= drawbacks thread

= Increased overhead due to
interrupt processing and 1 hw thread

context switch ?

V

RTOS kernel

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Support for Message Passing

‘ \ other memory
G peripherals controller
system bus
S

O
interface interface

oS
I interface

hw hw hw
thread thread I thread

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Support for Message Passing

‘ \ other memory
G peripherals controller
system bus
S

g g g

O

OS OS

interface interface interface

hw hw hw
thread thread thread

®m direct HW thread-to-thread communication can be inefficient

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Support for Message Passing

other memory |[/M—\
G peripherals con sl N D

1L L e
1] 1L

' :
OS OS OS
iterface interface interface

hw hw hw
thread thread thread

® direct HW thread-to-thread communication can be inefficient
= shared memory: external memory access + bus arbitration

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Support for Message Passing

other memory H
G peripherals || controHer™ | D

s (s
g g 1\
s o e

interface interface

hw hw hw
thread thread thread

® direct HW thread-to-thread communication can be inefficient
= shared memory: external memory access + bus arbitration

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Support for Message Passing

‘ \ other memory
G peripherals controller
system bus
S

O OS

interface interface interface

hw hw hw
thread thread thread

® direct HW thread-to-thread communication can be inefficient
= shared memory: external memory access + bus arbitration

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Support for Message Passing

other memory
peripherals controller

g 1C

(O] OS Q)
interface interface interfate

system bus

hw hw hw
thread thread thread

® direct HW thread-to-thread communication can be inefficient
= shared memory: external memory access + bus arbitration
= message passing: OS overhead (interrupt processing in CPU)

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Support for Message Passing

other memory
peripherals controller

(O] OS Q)
interface interface interfate

system bus

hw hw hw
thread thread thread

® direct HW thread-to-thread communication can be inefficient
= shared memory: external memory access + bus arbitration
= message passing: OS overhead (interrupt processing in CPU)

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Support for Message Passing

CPU other memory
peripherals controller
system bus

W .

0OS
interface interface interface

hw hw hw
thread thread thread

® direct HW thread-to-thread communication can be inefficient
= shared memory: external memory access + bus arbitration
= message passing: OS overhead (interrupt processing in CPU)

® direct connection of HW threads via buffered point-to-point links
® transparently supported by existing message queue API
® message routing dependent on current thread location (planned)

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Support for Message Passing

other memory
peripherals controller

system bus

ags

interface

® direct HW thread-to-thread communication can be inefficient
= shared memory: external memory access + bus arbitration
= message passing: OS overhead (interrupt processing in CPU)

® direct connection of HW threads via buffered point-to-point links
® transparently supported by existing message queue API
® message routing dependent on current thread location (planned)

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Support for Message Passing

memory
controller

g

A
OS
\

erface

hw hw
thread thread

® direct HW thread-to-thread communication can be inefficient
= shared memory: external memory access + bus arbitration
= message passing: OS overhead (interrupt processing in CPU)

® direct connection of HW threads via buffered point-to-point links
® transparently supported by existing message queue API
® message routing dependent on current thread location (planned)

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Outline

= performance & overheads

® conclusion & outlook

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Synchronization Overheads

SW thread I (g» SW thread

HW thread HW thread

\. P \ /

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Synchronization Overheads

= synthetic hardware and software
threads

= semaphore and mutex processing time
(post — wait / unlock — lock)

SW thread SW thread

1 /5\

HW thread HW thread

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Synchronization Overheads

= synthetic hardware and software
threads

= semaphore and mutex processing time
(post — wait / unlock — lock)

® OS calls involving hardware exhibit 4@;;
/

higher latencies

® [imited impact on system performance

= |ogic resources mainly used for heavy data- HW thread
parallel processing

= |ess synchronization-intensive control
dominated code

SW thread SW thread

HW thread

with data cache without data cache
Configuration semaphore mutex | semaphore mutex
SW — SW 3.39 4.53 29.05 43.99
SW — HW 4.71 6.29 30.49 47.43
HW — SW 10.74 14.49 82.90 100.23
HW — HW 11.90 14.60 83.13 101.49

All values are given in us

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

with data cache without data cache

Operation S MB/s S MB/s

MEM—HW (burst read) 45.74 170.80 46.41 168.34

HW—MEM (burst write) 40.54 192.71 40.55 192.66
MEM—SW—MEM (memcopy) 132.51 58.96 625.00 12.50

hardware ... y HW—HW (mbox read) 61.42 127.20 61.42 127.20
HW—HW (mbox write) 61.45 127.14 61.45 127.14

software .» SW—HW (mbox read) 58500 0.13 | 374000 0.02
mailboxes HW—SW (mbox write) 58510 0.13 | 374000 0.02

All operations were run for 8 kBytes of data

other memory DRAM
peripherals controller
system buses (PLB/DCR)

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

with data cache without data cache

Operation LS MB/s US MB/s

MEM—HW (burst read) 45.74 170.80 46.41 168.34

HW —MEM (burst write) 40.54 192.71 40.55 192.66

MEM—SW—MEM (memcopy) 132.51 58.96 | 625.00 12.50

hardware ... y HW—HW (mbOX read) 61.42 127.20 61.42 127.20

HW—HW (mbox write) 6145 127.14 61.45 127.14

software .y SW—HW (mbox read) 58500 0.13 | 374000 0.02
mailboxes HW—SW (mbox write) 58510 0.13 | 374000

All operations were run for 8 kBytes of data

hw
thread thread

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

Operation

with data cache

S

MB/s

without data cache
S MB/s

MEM—HW (burst read)
HW—MEM (burst write)

45.74
40.54

170.80
192.71

46.41 168.34
40.55 192.66

| MEM—SW—MEM (memcopy)

132.51

58.96

625.00 12.50

hardware ..» HW—HW (mbox read)
HW—HW (mbox write)

software .» SW—HW (mbox read)

mailboxes HW—SW (mbox write)

61.42
61.45
58500
58510

127.20
127.14
0.13
0.13

61.42 127.20
61.45 127.14
374000 0.02
374000 0.02

All operations were run for 8 kBytes of data

E.LUbbers & M.Platzner, University of Paderborn

ERSA ‘08

peripherals

system buses (PLB/DCR)

OS OS

hw
thread

hw
thread

Communication Performance

with data cache without data cache

Operation LS MB/s US MB/s

MEM—HW (burst read) 45.74 170.80 46.41 168.34

HW—MEM (burst write) 40.54 192.71 40.55 192.66
MEM—-SW—MEM (memcopy) 132.51 58.96 625.00 12.50

hardware ..»| HW—HW (mbox read)) 61.42 127.20 61.42 127.20
HW—HW (mbox write) 6145 127.14 61.45 127.14
software .y SW—HW (mbox read) 58500 0.13 | 374000 0.02
mailboxes HW—SW (mbox write) 58510 0.13 | 374000 0.02

All operations were run for 8 kBytes of data

other memory DRAM
peripherals controller
system buses (PLB/DCR)

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

with data cache without data cache

Operation LS MB/s US MB/s

MEM—HW (burst read) 4574 170.80 46.41 168.34

HW—MEM (burst write) 40.54 192.71 40.55 192.66
MEM—SW—MEM (memcopy) 132.51 58.96 625.00 12.50

hardware ... y HW—HW (mbOX read) 61.42 127.20 61.42 127.20
HW—HW (mbox write) 6145 127.14 61.45 127.14

software _.y| SW—HW (mbox read) 58500 0.13 | 374000 0.02
mailboxes HW—SW (mbox write) 58510 0.13 | 374000 0.02

All operations were run for 8 kBytes of data

other memory
peripherals controller

hw hv
thread thread

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

Operation

with data cache

S

MB/s

without data cache

S

MB/s

MEM—HW (burst read)
HW—MEM (burst write)

MEM—SW—MEM (memcopy)

hardware .» HW—HW (mbox read)
HW—HW (mbox write)
software .y SW—HW (mbox read)

mailboxes HW—SW (mbox write)

45.74
40.54
132.51
61.42
61.45
58500
58510

170.80
192.71
58.96
127.20
127.14
0.13
0.13

46.41
40.55
625.00
61.42
61.45
374000
374000

168.34
192.66
12.50
127.20
127.14
0.02
0.02

All operations were run for 8 kBytes of data

B comparison between memory
access and FIFO transfers

= FIFOs are faster for HW thread to
HW thread communications (+40%)

= No additional load on memory
system or CPU

= improves thread-parallelism

E.LUbbers & M.Platzner, University of Paderborn

other memory
peripherals controller
sy

ERSA ‘08

||H!!II

||l!!l|

DRAM

stem buses (PLB/DCR)

Conclusion & Outlook

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Conclusion & Outlook

= common set of high-level communication and synchronization
objects for hard- and software unifies programming model

® existing operating systems can be extended with mechanisms
for low-level communication and synchronization between
hardware threads and kernel

= acceptable performance in benchmarks and larger case studies

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Conclusion & Outlook

= common set of high-level communication and synchronization
objects for hard- and software unifies programming model

® existing operating systems can be extended with mechanisms
for low-level communication and synchronization between
hardware threads and kernel

= acceptable performance in benchmarks and larger case studies

® future work
= extension of hardware FIFOs to allow direct access from software threads

= fusion of shared memory and message-passing interfaces to hardware
threads

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Thank you

www.reconos.de

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

OS Overheads (Area)

command dec
23%

PLB IPIF
fifo manager

| | bus slave registers
= total OSIF slice count: 1213 slices command decoder

= most of this taken up by PLB IPIF logic bus master control

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Supported OS Calls

Semaphores (counting and binary) | o A
« reconos_semaphore_post() basic synchronization

= reconos_semaphore_wait() primitives

Mutexes

= reconos_mutex_lock() synchronize access to

= reconos_mutex_trylock() mutual exclusive operations

= reconos_mutex_unlock() (critical sections)

= reconos_mutex_release() handled In
&

Condition Variables software

= reconos_cond_wait() allow waiting until arbitrary via delegate

= reconos_cond_signal() conditions are satisfied thread)

= reconos_cond_broadcast()

Mailboxes

reconos_mbox_get()
reconos_mbox_tryget() message passing primitives
reconos_mbox_put() (blocking and not blocking)
reconos_mbox_tryput()

Memory access
= reconos_read()
= reconos_write()
= reconos_read_burst()
= reconos_write burst()

) handled in
> hardware
(via system

CPU-independent access bus / pgint-
to the entire system address to-point
space (memory and peripherals) links)

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

ReconOS Software API (POSIX)

®m standard POSIX thread creation = ReconOS hardware thread creation

mqd_t my_mbox; mqd_t my_mbox;
sem_t my_sem; sem_t my_sem;
reconos_res_t thread_resources[2] = {
{ &my_mbox, POSIX_MQD_T },
{ &my_sem, POSIX_SEM_T }
s

pthread_t thread; rthread thread;
pthread_attr_t thread_attr; pthread_attr_t thread_swattr;

rthread_attr_t thread_hwattr;

pthread_attr_init(&thread_attr); pthread_attr_init(&thread_swattr);

rthread_attr_init(&thread_hwattr);
rthread_attr_setslotnum(&thread_hwattr, 0);

rthread_attr_setresources(&thread_hwattr,
thread_resources, 2);

pthread_create(rthread_create(

&thread, // thread object &thread, // thread object
&thread_attr, // attributes &thread_swattr, // software attributes

thread_entry, // entry point &thread_hwattr, // hardware attributes
(void *) data // entry data (void *) data // entry data

D D

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

® transfer of multiple state = A (HW thread) (OSIF) C CPU)
parameters and

return values with a
single VHDL call

= distributes execution
of an FSM state
across multiple clock
cycles

command

data

thread (busy/block

step

data

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

= transfer of multiple
parameters and
return values with a
single VHDL call

= distributes execution
of an FSM state
across multiple clock
cycles

state =B

command

data

thread | busy/block

step

data

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

® transfer of multiple state = A CHW thread) (OSIF) C CPU)
parameters and
return values with a
single VHDL call o

® distributes execution omd + data(1)
of an FSM state
across multiple clock "~ busy/block "
cycles

command

data

thread (busy/block

step

data

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

® transfer of multiple state = A CHW thread) (OSIF) C CPU)
parameters and
return values with a
single VHDL call o

® distributes execution omd + data(1)
of an FSM state
across multiple clock busy/block ~
cycles

state = B cmd + data(0)

function
call

command

data

thread (busy/block

step

data

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

= transfer of multiple
parameters and

Multi-Cycle Commands

return values with a

single VHDL call

state =B

m distributes execution

of an FSM state

across multiple clock
cycles

thread

command

data

| busy/block

step

data

E.LUbbers & M.Platzner, University of Paderborn

state = A CHWthread) [OSIF)[CPU)

reconos call

cmd + data(0)

cmd + data(1)

busy/block

function
call

unblock + _
return value

call finished

ERSA ‘08

= transfer of multiple
parameters and

Multi-Cycle Commands

return values with a

single VHDL call

state =B

m distributes execution

of an FSM state

across multiple clock
cycles

thread

command

<

data

busy/block

step

data

E.LUbbers & M.Platzner, University of Paderborn

state = A CHWthread) [OSIF)[CPU)

reconos call

cmd + data(0)

cmd + data(1)

busy/block

function
call

unblock + _
return value

call finished

ERSA ‘08

Toolchain

-

/-\

thread thread
shared .

>
memory

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Toolchain

ReconOS

g hardware
repository

thread (VHDL)

software
thread (C)

\-——/

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Toolchain

m software threads are written in C

u using the eCos software API software rzegzagf hardware
thread (C) e thread (VHDL)

® hardware threads are written In — T 4: N—
VHDL

u using the ReconOS VHDL API eCos library architecture
template

//

® architecture generation

u automatically inserts OS interfaces
and hardware threads into Xilinx
EDK platform templates

uconfigures and builds static eCos
library

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Toolchain

m software threads are written in C

u using the eCos software API

® hardware threads are written in
VHDL

u using the ReconOS VHDL API

® architecture generation

u automatically inserts OS interfaces
and hardware threads into Xilinx
EDK platform templates

uconfigures and builds static eCos
library

E.LUbbers & M.Platzner, University of Paderborn

software r':eg‘:i‘tgrs
thread (C) B

S——

hardware
thread (VHDL)

architecture
template

V7 TN

FPGA
toolflow

e

eCos library

compile & link

Sy

executable ™
J

| 4— bitstream

ERSA ‘08

Toolchain

m software threads are written in C

u using the eCos software API software ReconOS hardware

thread (C) epository thread (VHDL)

® hardware threads are written in “— T T —

VHDL

u using the ReconOS VHDL API eCos library architecture
template

® architecture generation \ 7/ \/: v

u automatically inserts OS interfaces
and hardware threads into Xilinx compile & link

FPGA
toolflow

EDK platform templates

uconfigures and builds static eCos \ +

library executable =~ ¥ 4— Ditstream

R : \‘_\‘l ——
= eCos extensions |
u hardware thread object encapsulating delegate thread and OS interface “driver”

u profiling support to track the state of the hardware threads' OS synchronization state
machines

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08

Case Study - Image Processing Filter

® three threads
= capture image from Ethernet
= apply LaPlacian filter
= display image on VGA monitor

® threads communicate through
shared memory

= image resolution: 320x240 pixels, 8
bit greyscale

= Image data organized into blocks
(e.g. 40 lines = 1 block)

= a block is protected by two
semaphores

® “ready” semaphore: data can be safely
written into this block

® “new” semaphore: new data is available
in this block

E.LUbbers & M.Platzner, University of Paderborn

frames/s

capture thread
(software)

filter thread
(hard- or
software)

source
image

i
write

read

display thread

(hard- or
software)

flltered

8,5

[| SW-SW-SW
[| SW-HW-HW

[| SW-HW-sw

[] SW-HW-HW double buffered

A

3

window size

5

Case Study - Image Processing Filter

® three threads
= capture image from Ethernet
= apply LaPlacian filter
= display image on VGA monitor

® threads communicate through
shared memory

= image resolution: 320x240 pixels, 8
bit greyscale

= Image data organized into blocks
(e.g. 40 lines = 1 block)

= a block is protected by two
semaphores

® “ready” semaphore: data can be safely
written into this block

® “new” semaphore: new data is available
in this block

E.LUbbers & M.Platzner, University of Paderborn

capture thread
(software)

filter thread
(hard- or
software)

source
image

i
write

read

display thread
(hard- or
software)

flltered

[| SW-SW-SW
[| SW-HW-HW

[| SW-HW-sw

[] SW-HW-HW double buffered

Case Study - Results

7))
~
(7))
()
&
©
(.
Y

SW-SW-SW
SW-HW-SW
SW-HW-HW
SW-HW-HW double

>

3

window size

E.LUbbers & M.Platzner, University of Paderborn

Case Study - Results

SW-SW-SW
SW-HW-SW
SW-HW-HW
SW-HW-HW double

E.LUbbers & M.Platzner, University of Paderborn

