
Communication and Synchronization
in Multithreaded Reconfigurable
Computing Systems

Enno Lübbers and Marco Platzner
Computer Engineering Group
University of Paderborn

{enno.luebbers, platzner}@upb.de

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Design of CPU/FPGA Systems

2

CPU FPGA

hardware
accelerator

software
application

 hardware accelerators typically integrated as slave
coprocessors

 hardware/software boundary explicit
 tedious to program
 portability issues

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Design of CPU/FPGA Systems

2

CPU FPGA

hardware
accelerator

software
application

bus

registerdriver register

 hardware accelerators typically integrated as slave
coprocessors

 hardware/software boundary explicit
 tedious to program
 portability issues

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

3

application

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

3

thread thread threadthread

thread

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

3

thread thread threadthread

thread

operating system

software
thread

software
thread

software
thread

hardware
thread

hardware
thread

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

3

CPU FPGA

operating system

software
thread

software
thread

software
thread

hardware
thread

hardware
thread

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

3

CPU FPGA

OS
interface

OS kernel
OS

interface

software
thread

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

4

CPU FPGA

OS
interface

OS kernel

software
thread

software
thread

hardware
thread

hardware
thread

OS
interface

software
thread

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

4

CPU FPGA

OS
interface

OS kernel

software
thread

software
thread

hardware
thread

hardware
thread

OS
interface

 communication and synchronization

software
thread

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

4

CPU FPGA

OS
interface

OS kernel

software
thread

software
thread

hardware
thread

hardware
thread

OS
interface

 communication and synchronization
■ high-level (between the threads themselves)

software
thread

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

4

CPU FPGA

OS
interface

OS kernel

software
thread

software
thread

hardware
thread

hardware
thread

OS
interface

 communication and synchronization
■ high-level (between the threads themselves)
■ low-level (between hardware threads and operating system)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 5

Outline

 motivation

 high-level communication and synchronization

 low-level communication and synchronization

 performance & overheads

 conclusion & outlook

shared
memory

SEM_NEW

SEM_READY

MBOX_DATA

MBOX_IN1

MBOX_IN2 MBOX_OUT

THREAD_A

THREAD_B THREAD_C

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Programming Model

 applications are
divided into threads

 threads communicate
via operating system
objects
■ semaphores
■ mailboxes
■ shared memory
■ ...

6

shared
memory

SEM_NEW

SEM_READY

MBOX_DATA

MBOX_IN1

MBOX_IN2 MBOX_OUT

THREAD_A

THREAD_B THREAD_C

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Programming Model

 applications are
divided into threads

 threads communicate
via operating system
objects
■ semaphores
■ mailboxes
■ shared memory
■ ...

6

software (POSIX, C) hardware (ReconOS, VHDL)
sem_post() reconos_sem_post()

pthread_mutex_lock() reconos_mutex_lock()
mq_send() reconos_mbox_put()

value = *ptr reconos_read()
pthread_exit() reconos_thread_exit()

examples for API functions used by threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

High-Level Synchronization in ReconOS

 semaphores
■ general mechanism to synchronize execution
■ blocking wait() operation, non-blocking post()

operation
■ supported by both hardware and software threads

7

Thread A

wait()

post()

Thread B

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

High-Level Synchronization in ReconOS

 semaphores
■ general mechanism to synchronize execution
■ blocking wait() operation, non-blocking post()

operation
■ supported by both hardware and software threads

7

Thread A

wait()

post()

Thread B

Thread A

lock()
lock()

Thread B

unlock()

 mutexes
■ specific mechanism to protect critical sections

(e.g. read-modify-write to shared memory)
■ a thread can only release a mutex it “owns” (has

previously locked)
■ supported by both hardware and software threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

High-Level Synchronization in ReconOS

 semaphores
■ general mechanism to synchronize execution
■ blocking wait() operation, non-blocking post()

operation
■ supported by both hardware and software threads

7

Thread A

wait()

post()

Thread B

Thread A

join()

exit()

Thread B

Thread A

lock()
lock()

Thread B

unlock()

 mutexes
■ specific mechanism to protect critical sections

(e.g. read-modify-write to shared memory)
■ a thread can only release a mutex it “owns” (has

previously locked)
■ supported by both hardware and software threads

 thread termination
■ a thread can block until another thread exits
■ currently, only software threads can join(), but all

threads can exit()

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

High-Level Communication in ReconOS

 shared memory
■ all threads have direct access to the entire

memory space
■ accesses need to be synchronized using

semaphores or mutexes
■ dedicated hardware support for burst

transfers

8

Thread A

mutex

Thread B

shared
memory

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

High-Level Communication in ReconOS

 shared memory
■ all threads have direct access to the entire

memory space
■ accesses need to be synchronized using

semaphores or mutexes
■ dedicated hardware support for burst

transfers

8

Thread A

mutex

Thread B

shared
memory

Thread A Thread B

message queue

 message queues
■ can block if queue is empty / full
■ combined communication and

synchronization primitive
■ supported by both hardware and software

threads
■ dedicated hardware FIFOs for hardware

threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 9

Outline

 motivation

 high-level communication and synchronization

 low-level communication and synchronization

 performance & overheads

 conclusion & outlook

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Architecture

 developed on Xilinx Virtex-II Pro, Virtex-4 FX FPGAs
 based on CoreConnect bus topology
 OS kernel is eCos for PowerPC ported to Virtex

10

system buses (PLB, DCR)

CPU
OS

kernel

memory
controller

external
memory

I/O controller

interrupt
controller

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Architecture

 developed on Xilinx Virtex-II Pro, Virtex-4 FX FPGAs
 based on CoreConnect bus topology
 OS kernel is eCos for PowerPC ported to Virtex

10

system buses (PLB, DCR)

CPU

software
thread

software
thread

OS
kernel

memory
controller

external
memory

I/O controller

interrupt
controller

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Architecture

 developed on Xilinx Virtex-II Pro, Virtex-4 FX FPGAs
 based on CoreConnect bus topology
 OS kernel is eCos for PowerPC ported to Virtex

10

system buses (PLB, DCR)

CPU

software
thread

software
thread

hardware
thread

hardware
thread

hardware
thread

OS
kernel

memory
controller

external
memory

I/O controller

interrupt
controller

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Architecture

 developed on Xilinx Virtex-II Pro, Virtex-4 FX FPGAs
 based on CoreConnect bus topology
 OS kernel is eCos for PowerPC ported to Virtex

10

system buses (PLB, DCR)

CPU

software
thread

software
thread

hardware
thread

hardware
thread

hardware
thread

OS
kernel

memory
controller

external
memory

I/O controller

OS interface OS interface OS interface

interrupt
controller

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 11

Hardware Thread

IDLE READ

POST

WRITE

RUN

i_osif

o_osif

clk

reset

transitions occur only when

OS interface is ready

user logic

OS synchronization state machine

hardware thread

/ sem_wait

(C_SEM_A)

done = '1' /

run <= '0'

done = '0'/

run <= '1' / shm_read()

/ shm_write()

/ sem_post

(C_SEM_B)

run done

local
RAM

O
S

 I
n

te
r
fa

c
e

 a hardware thread consists of two parts

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 11

Hardware Thread

IDLE READ

POST

WRITE

RUN

i_osif

o_osif

clk

reset

transitions occur only when

OS interface is ready

user logic

OS synchronization state machine

hardware thread

/ sem_wait

(C_SEM_A)

done = '1' /

run <= '0'

done = '0'/

run <= '1' / shm_read()

/ shm_write()

/ sem_post

(C_SEM_B)

run done

local
RAM

O
S

 I
n

te
r
fa

c
e

 a hardware thread consists of two parts

■ an OS synchronization state machine
 synchronizes thread with

operating system calls
 serializes access to OS

objects via the OS interface
 can be blocked by the

OS interface

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 11

Hardware Thread

IDLE READ

POST

WRITE

RUN

i_osif

o_osif

clk

reset

transitions occur only when

OS interface is ready

user logic

OS synchronization state machine

hardware thread

/ sem_wait

(C_SEM_A)

done = '1' /

run <= '0'

done = '0'/

run <= '1' / shm_read()

/ shm_write()

/ sem_post

(C_SEM_B)

run done

local
RAM

O
S

 I
n

te
r
fa

c
e

 a hardware thread consists of two parts

■ an OS synchronization state machine
 synchronizes thread with

operating system calls
 serializes access to OS

objects via the OS interface
 can be blocked by the

OS interface

■ parallel “user processes”
 communicate with OS

synchronization state machine
 can directly access local

memory blocks
 are not necessarily blocked

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 11

Hardware Thread

IDLE READ

POST

WRITE

RUN

i_osif

o_osif

clk

reset

transitions occur only when

OS interface is ready

user logic

OS synchronization state machine

hardware thread

/ sem_wait

(C_SEM_A)

done = '1' /

run <= '0'

done = '0'/

run <= '1' / shm_read()

/ shm_write()

/ sem_post

(C_SEM_B)

run done

local
RAM

O
S

 I
n

te
r
fa

c
e

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 12

ReconOS API for Hardware Threads

■ VHDL function library
■ used similar to software API
■ may only be used inside OS

synchronization state machine

IDLE READ

POST

WRITE

RUN

i_osif

o_osif

clk

reset

transitions occur only when

OS interface is ready

user logic

OS synchronization state machine

hardware thread

/ sem_wait

(C_SEM_A)

done = '1' /

run <= '0'

done = '0'/

run <= '1' / shm_read()

/ shm_write()

/ sem_post

(C_SEM_B)

run done

local
RAM

O
S

 I
n

te
r
fa

c
e

64 bit PLB (memory bus)

i_
o

s
if

o
_

o
s
if

user logic

hardware thread

local
RAM

PLB slave
attachment

bus
master

controller

command decoder

O
S

 in
te

r
fa

c
e

to interrupt
controller

DCR slave
attachment

32 Bit DCR (control bus)

FIFO
manager

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 13

OS Interface

64 bit PLB (memory bus)

i_
o

s
if

o
_

o
s
if

user logic

hardware thread

local
RAM

PLB slave
attachment

bus
master

controller

command decoder

O
S

 in
te

r
fa

c
e

to interrupt
controller

DCR slave
attachment

32 Bit DCR (control bus)

FIFO
manager

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 13

OS Interface

 processes requests from
hardware thread
■ handles blocking and resuming of

hardware thread

64 bit PLB (memory bus)

i_
o

s
if

o
_

o
s
if

user logic

hardware thread

local
RAM

PLB slave
attachment

bus
master

controller

command decoder

O
S

 in
te

r
fa

c
e

to interrupt
controller

DCR slave
attachment

32 Bit DCR (control bus)

FIFO
manager

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 13

OS Interface

 processes requests from
hardware thread
■ handles blocking and resuming of

hardware thread

 relays OS object interactions to
CPU
■ DCR interface with bus-addressable

registers
■ dedicated interrupt

64 bit PLB (memory bus)

i_
o

s
if

o
_

o
s
if

user logic

hardware thread

local
RAM

PLB slave
attachment

bus
master

controller

command decoder

O
S

 in
te

r
fa

c
e

to interrupt
controller

DCR slave
attachment

32 Bit DCR (control bus)

FIFO
manager

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 13

OS Interface

 processes requests from
hardware thread
■ handles blocking and resuming of

hardware thread

 relays OS object interactions to
CPU
■ DCR interface with bus-addressable

registers
■ dedicated interrupt

 executes memory accesses
■ PLB master interface
■ direct access to entire system’s

address space (memory and
peripherals)

64 bit PLB (memory bus)

i_
o

s
if

o
_

o
s
if

user logic

hardware thread

local
RAM

PLB slave
attachment

bus
master

controller

command decoder

O
S

 in
te

r
fa

c
e

to interrupt
controller

DCR slave
attachment

32 Bit DCR (control bus)

FIFO
manager

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 13

OS Interface

 processes requests from
hardware thread
■ handles blocking and resuming of

hardware thread

 relays OS object interactions to
CPU
■ DCR interface with bus-addressable

registers
■ dedicated interrupt

 executes memory accesses
■ PLB master interface
■ direct access to entire system’s

address space (memory and
peripherals)

 dedicated FIFO channels
■ provide high-throughput hardware

support for message passing

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 14

Delegate Threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 14

 basic mechanism
■ a delegate thread in software is associated with every hardware thread
■ the delegate thread calls the OS kernel on behalf of the hardware thread
■ all kernel responses are relayed back to the hardware thread

Delegate Threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 14

 basic mechanism
■ a delegate thread in software is associated with every hardware thread
■ the delegate thread calls the OS kernel on behalf of the hardware thread
■ all kernel responses are relayed back to the hardware thread

 advantages
■ no modification of the kernel required
■ extremely flexible
■ transparent to kernel and

other threads

Delegate Threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 14

 basic mechanism
■ a delegate thread in software is associated with every hardware thread
■ the delegate thread calls the OS kernel on behalf of the hardware thread
■ all kernel responses are relayed back to the hardware thread

 advantages
■ no modification of the kernel required
■ extremely flexible
■ transparent to kernel and

other threads

 drawbacks
■ increased overhead due to

interrupt processing and
context switch

Delegate Threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 15

Hardware Support for Message Passing

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 15

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 15

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 15

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 15

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 15

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration
■ message passing: OS overhead (interrupt processing in CPU)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 15

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration
■ message passing: OS overhead (interrupt processing in CPU)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 16

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration
■ message passing: OS overhead (interrupt processing in CPU)

 direct connection of HW threads via buffered point-to-point links
 transparently supported by existing message queue API
 message routing dependent on current thread location (planned)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 16

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration
■ message passing: OS overhead (interrupt processing in CPU)

 direct connection of HW threads via buffered point-to-point links
 transparently supported by existing message queue API
 message routing dependent on current thread location (planned)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 16

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration
■ message passing: OS overhead (interrupt processing in CPU)

 direct connection of HW threads via buffered point-to-point links
 transparently supported by existing message queue API
 message routing dependent on current thread location (planned)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 17

Outline

 motivation

 high-level communication and synchronization

 low-level communication and synchronization

 performance & overheads

 conclusion & outlook

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 18

Synchronization Overheads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 18

Synchronization Overheads

 synthetic hardware and software
threads
■ semaphore and mutex processing time

(post → wait / unlock → lock)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 18

Synchronization Overheads

 synthetic hardware and software
threads
■ semaphore and mutex processing time

(post → wait / unlock → lock)
 OS calls involving hardware exhibit

higher latencies
 limited impact on system performance

■ logic resources mainly used for heavy data-
parallel processing

■ less synchronization-intensive control
dominated code

OS
interface

hw
thread

system buses (PLB/DCR)

other
peripherals

memory
controller

DRAM

OS
interface

hw
thread

CPU

FIFO

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

19

hardware
FIFOs

software
mailboxes

OS
interface

hw
thread

system buses (PLB/DCR)

other
peripherals

memory
controller

DRAM

OS
interface

hw
thread

CPU

FIFO

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

19

hardware
FIFOs

software
mailboxes

OS
interface

hw
thread

system buses (PLB/DCR)

other
peripherals

memory
controller

DRAM

OS
interface

hw
thread

CPU

FIFO

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

19

hardware
FIFOs

software
mailboxes

OS
interface

hw
thread

system buses (PLB/DCR)

other
peripherals

memory
controller

DRAM

OS
interface

hw
thread

CPU

FIFO

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

19

hardware
FIFOs

software
mailboxes

OS
interface

hw
thread

system buses (PLB/DCR)

other
peripherals

memory
controller

DRAM

OS
interface

hw
thread

CPU

FIFO

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

19

hardware
FIFOs

software
mailboxes

OS
interface

hw
thread

system buses (PLB/DCR)

other
peripherals

memory
controller

DRAM

OS
interface

hw
thread

CPU

FIFO

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

 comparison between memory
access and FIFO transfers
■ FIFOs are faster for HW thread to

HW thread communications (+40%)
■ no additional load on memory

system or CPU
■ improves thread-parallelism

19

hardware
FIFOs

software
mailboxes

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Conclusion & Outlook

20

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Conclusion & Outlook

 common set of high-level communication and synchronization
objects for hard- and software unifies programming model

 existing operating systems can be extended with mechanisms
for low-level communication and synchronization between
hardware threads and kernel

 acceptable performance in benchmarks and larger case studies

20

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Conclusion & Outlook

 common set of high-level communication and synchronization
objects for hard- and software unifies programming model

 existing operating systems can be extended with mechanisms
for low-level communication and synchronization between
hardware threads and kernel

 acceptable performance in benchmarks and larger case studies

 future work
■ extension of hardware FIFOs to allow direct access from software threads
■ fusion of shared memory and message-passing interfaces to hardware

threads

20

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 21

Thank you

www.reconos.de

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 22

command decoder
23%

bus slave registers
12%

fifo manager
5%

PLB IPIF
59%

OS Overheads (Area)

 total OSIF slice count: 1213 slices
■ most of this taken up by PLB IPIF logic

PLB IPIF
fifo manager
bus slave registers
command decoder
bus master control

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 23

Supported OS Calls

 Semaphores (counting and binary)
■ reconos_semaphore_post()
■ reconos_semaphore_wait()

 Mutexes
■ reconos_mutex_lock()
■ reconos_mutex_trylock()
■ reconos_mutex_unlock()
■ reconos_mutex_release()

 Condition Variables
■ reconos_cond_wait()
■ reconos_cond_signal()
■ reconos_cond_broadcast()

 Mailboxes
■ reconos_mbox_get()
■ reconos_mbox_tryget()
■ reconos_mbox_put()
■ reconos_mbox_tryput()

 Memory access
■ reconos_read()
■ reconos_write()
■ reconos_read_burst()
■ reconos_write_burst()

handled in
software

(via delegate
thread)

handled in
hardware

(via system
bus / point-

to-point
links)

basic synchronization
primitives

synchronize access to
mutual exclusive operations

(critical sections)

allow waiting until arbitrary
conditions are satisfied

CPU-independent access
to the entire system address

space (memory and peripherals)

message passing primitives
(blocking and not blocking)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 24

ReconOS Software API (POSIX)

mqd_t my_mbox;
sem_t my_sem;

pthread_t thread;
pthread_attr_t thread_attr;

...

pthread_attr_init(&thread_attr);

pthread_create(
 &thread, // thread object
 &thread_attr, // attributes
 thread_entry, // entry point
 (void *) data // entry data
);

mqd_t my_mbox;
sem_t my_sem;
reconos_res_t thread_resources[2] = {
	 { &my_mbox, POSIX_MQD_T },
	 { &my_sem, POSIX_SEM_T }
};

rthread thread;
pthread_attr_t thread_swattr;
rthread_attr_t thread_hwattr;
...

pthread_attr_init(&thread_swattr);
rthread_attr_init(&thread_hwattr);
rthread_attr_setslotnum(&thread_hwattr, 0);
rthread_attr_setresources(&thread_hwattr,
 thread_resources, 2);

rthread_create(
 &thread, // thread object
 &thread_swattr, // software attributes
 &thread_hwattr, // hardware attributes
 (void *) data // entry data
);

 standard POSIX thread creation  ReconOS hardware thread creation

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

25

HW
thread

command

data

busy/block

step

data

OSIF

step

HW thread OSIFstate = A CPU

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

25

HW
thread

command

data

busy/block

step

data

OSIF

step

cmd + data(0)

reconos call

state = B step = 0

HW thread OSIFstate = A CPU

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

25

HW
thread

command

data

busy/block

step

data

OSIF

step

cmd + data(0)

reconos call

state = B step = 0

cmd + data(1)

busy/block

state = B step = 1

HW thread OSIFstate = A CPU

function
call

state = B step = 1

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

25

HW
thread

command

data

busy/block

step

data

OSIF

step

cmd + data(0)

reconos call

state = B step = 0

cmd + data(1)

busy/block

state = B step = 1

HW thread OSIFstate = A CPU

function
call

state = B step = 1

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

25

HW
thread

command

data

busy/block

step

data

OSIF

step

cmd + data(0)

reconos call

state = B step = 0

cmd + data(1)

busy/block

state = B step = 1

HW thread OSIFstate = A CPU

unblock +
return value

call finished

state = B step = 2

return
value

function
call

state = B step = 1

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

25

HW
thread

command

data

busy/block

step

data

OSIF

step

cmd + data(0)

reconos call

state = B step = 0

cmd + data(1)

busy/block

state = B step = 1

HW thread OSIFstate = A CPU

state = C step = 0

unblock +
return value

call finished

state = B step = 2

return
value

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 26

Toolchain

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 26

Toolchain

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 26

Toolchain

 software threads are written in C
u using the eCos software API

 hardware threads are written in
VHDL

u using the ReconOS VHDL API

 architecture generation
u automatically inserts OS interfaces

and hardware threads into Xilinx
EDK platform templates

u configures and builds static eCos
library

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 26

Toolchain

 software threads are written in C
u using the eCos software API

 hardware threads are written in
VHDL

u using the ReconOS VHDL API

 architecture generation
u automatically inserts OS interfaces

and hardware threads into Xilinx
EDK platform templates

u configures and builds static eCos
library

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 26

Toolchain

 software threads are written in C
u using the eCos software API

 hardware threads are written in
VHDL

u using the ReconOS VHDL API

 architecture generation
u automatically inserts OS interfaces

and hardware threads into Xilinx
EDK platform templates

u configures and builds static eCos
library

 eCos extensions
u hardware thread object encapsulating delegate thread and OS interface “driver”
u profiling support to track the state of the hardware threads' OS synchronization state

machines

E.Lübbers & M.Platzner, University of Paderborn 27

 three threads
■ capture image from Ethernet
■ apply LaPlacian filter
■ display image on VGA monitor

 threads communicate through
shared memory
■ image resolution: 320x240 pixels, 8

bit greyscale
■ image data organized into blocks

(e.g. 40 lines = 1 block)
■ a block is protected by two

semaphores
 “ready” semaphore: data can be safely

written into this block
 “new” semaphore: new data is available

in this block

Case Study - Image Processing Filter

0

7,5

15,0

22,5

30,0

3 5

25,425,5
23,223,5

18,619,0

8,5

16,2
fra

m
es

/s

window size

SW-SW-SW SW-HW-SW
SW-HW-HW SW-HW-HW double buffered

E.Lübbers & M.Platzner, University of Paderborn 27

 three threads
■ capture image from Ethernet
■ apply LaPlacian filter
■ display image on VGA monitor

 threads communicate through
shared memory
■ image resolution: 320x240 pixels, 8

bit greyscale
■ image data organized into blocks

(e.g. 40 lines = 1 block)
■ a block is protected by two

semaphores
 “ready” semaphore: data can be safely

written into this block
 “new” semaphore: new data is available

in this block

Case Study - Image Processing Filter

SW-SW-SW SW-HW-SW
SW-HW-HW SW-HW-HW double buffered

E.Lübbers & M.Platzner, University of Paderborn 28

0

7,5

15,0

22,5

30,0

3 5

25,425,5

23,223,5

18,619,0

8,5

16,2

fra
m

es
/s

window size

SW-SW-SW
SW-HW-SW
SW-HW-HW
SW-HW-HW double buffered

Case Study - Results

E.Lübbers & M.Platzner, University of Paderborn 28

SW-SW-SW
SW-HW-SW
SW-HW-HW
SW-HW-HW double buffered

Case Study - Results

