
Communication and Synchronization
in Multithreaded Reconfigurable
Computing Systems

Enno Lübbers and Marco Platzner
Computer Engineering Group
University of Paderborn

{enno.luebbers, platzner}@upb.de

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Design of CPU/FPGA Systems

2

CPU FPGA

hardware
accelerator

software
application

 hardware accelerators typically integrated as slave
coprocessors

 hardware/software boundary explicit
 tedious to program
 portability issues

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Design of CPU/FPGA Systems

2

CPU FPGA

hardware
accelerator

software
application

bus

registerdriver register

 hardware accelerators typically integrated as slave
coprocessors

 hardware/software boundary explicit
 tedious to program
 portability issues

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

3

application

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

3

thread thread threadthread

thread

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

3

thread thread threadthread

thread

operating system

software
thread

software
thread

software
thread

hardware
thread

hardware
thread

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

3

CPU FPGA

operating system

software
thread

software
thread

software
thread

hardware
thread

hardware
thread

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

3

CPU FPGA

OS
interface

OS kernel
OS

interface

software
thread

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

4

CPU FPGA

OS
interface

OS kernel

software
thread

software
thread

hardware
thread

hardware
thread

OS
interface

software
thread

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

4

CPU FPGA

OS
interface

OS kernel

software
thread

software
thread

hardware
thread

hardware
thread

OS
interface

 communication and synchronization

software
thread

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

4

CPU FPGA

OS
interface

OS kernel

software
thread

software
thread

hardware
thread

hardware
thread

OS
interface

 communication and synchronization
■ high-level (between the threads themselves)

software
thread

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multithreaded Programming

4

CPU FPGA

OS
interface

OS kernel

software
thread

software
thread

hardware
thread

hardware
thread

OS
interface

 communication and synchronization
■ high-level (between the threads themselves)
■ low-level (between hardware threads and operating system)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 5

Outline

 motivation

 high-level communication and synchronization

 low-level communication and synchronization

 performance & overheads

 conclusion & outlook

shared
memory

SEM_NEW

SEM_READY

MBOX_DATA

MBOX_IN1

MBOX_IN2 MBOX_OUT

THREAD_A

THREAD_B THREAD_C

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Programming Model

 applications are
divided into threads

 threads communicate
via operating system
objects
■ semaphores
■ mailboxes
■ shared memory
■ ...

6

shared
memory

SEM_NEW

SEM_READY

MBOX_DATA

MBOX_IN1

MBOX_IN2 MBOX_OUT

THREAD_A

THREAD_B THREAD_C

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Programming Model

 applications are
divided into threads

 threads communicate
via operating system
objects
■ semaphores
■ mailboxes
■ shared memory
■ ...

6

software (POSIX, C) hardware (ReconOS, VHDL)
sem_post() reconos_sem_post()

pthread_mutex_lock() reconos_mutex_lock()
mq_send() reconos_mbox_put()

value = *ptr reconos_read()
pthread_exit() reconos_thread_exit()

examples for API functions used by threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

High-Level Synchronization in ReconOS

 semaphores
■ general mechanism to synchronize execution
■ blocking wait() operation, non-blocking post()

operation
■ supported by both hardware and software threads

7

Thread A

wait()

post()

Thread B

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

High-Level Synchronization in ReconOS

 semaphores
■ general mechanism to synchronize execution
■ blocking wait() operation, non-blocking post()

operation
■ supported by both hardware and software threads

7

Thread A

wait()

post()

Thread B

Thread A

lock()
lock()

Thread B

unlock()

 mutexes
■ specific mechanism to protect critical sections

(e.g. read-modify-write to shared memory)
■ a thread can only release a mutex it “owns” (has

previously locked)
■ supported by both hardware and software threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

High-Level Synchronization in ReconOS

 semaphores
■ general mechanism to synchronize execution
■ blocking wait() operation, non-blocking post()

operation
■ supported by both hardware and software threads

7

Thread A

wait()

post()

Thread B

Thread A

join()

exit()

Thread B

Thread A

lock()
lock()

Thread B

unlock()

 mutexes
■ specific mechanism to protect critical sections

(e.g. read-modify-write to shared memory)
■ a thread can only release a mutex it “owns” (has

previously locked)
■ supported by both hardware and software threads

 thread termination
■ a thread can block until another thread exits
■ currently, only software threads can join(), but all

threads can exit()

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

High-Level Communication in ReconOS

 shared memory
■ all threads have direct access to the entire

memory space
■ accesses need to be synchronized using

semaphores or mutexes
■ dedicated hardware support for burst

transfers

8

Thread A

mutex

Thread B

shared
memory

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

High-Level Communication in ReconOS

 shared memory
■ all threads have direct access to the entire

memory space
■ accesses need to be synchronized using

semaphores or mutexes
■ dedicated hardware support for burst

transfers

8

Thread A

mutex

Thread B

shared
memory

Thread A Thread B

message queue

 message queues
■ can block if queue is empty / full
■ combined communication and

synchronization primitive
■ supported by both hardware and software

threads
■ dedicated hardware FIFOs for hardware

threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 9

Outline

 motivation

 high-level communication and synchronization

 low-level communication and synchronization

 performance & overheads

 conclusion & outlook

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Architecture

 developed on Xilinx Virtex-II Pro, Virtex-4 FX FPGAs
 based on CoreConnect bus topology
 OS kernel is eCos for PowerPC ported to Virtex

10

system buses (PLB, DCR)

CPU
OS

kernel

memory
controller

external
memory

I/O controller

interrupt
controller

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Architecture

 developed on Xilinx Virtex-II Pro, Virtex-4 FX FPGAs
 based on CoreConnect bus topology
 OS kernel is eCos for PowerPC ported to Virtex

10

system buses (PLB, DCR)

CPU

software
thread

software
thread

OS
kernel

memory
controller

external
memory

I/O controller

interrupt
controller

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Architecture

 developed on Xilinx Virtex-II Pro, Virtex-4 FX FPGAs
 based on CoreConnect bus topology
 OS kernel is eCos for PowerPC ported to Virtex

10

system buses (PLB, DCR)

CPU

software
thread

software
thread

hardware
thread

hardware
thread

hardware
thread

OS
kernel

memory
controller

external
memory

I/O controller

interrupt
controller

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Hardware Architecture

 developed on Xilinx Virtex-II Pro, Virtex-4 FX FPGAs
 based on CoreConnect bus topology
 OS kernel is eCos for PowerPC ported to Virtex

10

system buses (PLB, DCR)

CPU

software
thread

software
thread

hardware
thread

hardware
thread

hardware
thread

OS
kernel

memory
controller

external
memory

I/O controller

OS interface OS interface OS interface

interrupt
controller

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 11

Hardware Thread

IDLE READ

POST

WRITE

RUN

i_osif

o_osif

clk

reset

transitions occur only when

OS interface is ready

user logic

OS synchronization state machine

hardware thread

/ sem_wait

(C_SEM_A)

done = '1' /

run <= '0'

done = '0'/

run <= '1' / shm_read()

/ shm_write()

/ sem_post

(C_SEM_B)

run done

local
RAM

O
S

 I
n

te
r
fa

c
e

 a hardware thread consists of two parts

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 11

Hardware Thread

IDLE READ

POST

WRITE

RUN

i_osif

o_osif

clk

reset

transitions occur only when

OS interface is ready

user logic

OS synchronization state machine

hardware thread

/ sem_wait

(C_SEM_A)

done = '1' /

run <= '0'

done = '0'/

run <= '1' / shm_read()

/ shm_write()

/ sem_post

(C_SEM_B)

run done

local
RAM

O
S

 I
n

te
r
fa

c
e

 a hardware thread consists of two parts

■ an OS synchronization state machine
 synchronizes thread with

operating system calls
 serializes access to OS

objects via the OS interface
 can be blocked by the

OS interface

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 11

Hardware Thread

IDLE READ

POST

WRITE

RUN

i_osif

o_osif

clk

reset

transitions occur only when

OS interface is ready

user logic

OS synchronization state machine

hardware thread

/ sem_wait

(C_SEM_A)

done = '1' /

run <= '0'

done = '0'/

run <= '1' / shm_read()

/ shm_write()

/ sem_post

(C_SEM_B)

run done

local
RAM

O
S

 I
n

te
r
fa

c
e

 a hardware thread consists of two parts

■ an OS synchronization state machine
 synchronizes thread with

operating system calls
 serializes access to OS

objects via the OS interface
 can be blocked by the

OS interface

■ parallel “user processes”
 communicate with OS

synchronization state machine
 can directly access local

memory blocks
 are not necessarily blocked

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 11

Hardware Thread

IDLE READ

POST

WRITE

RUN

i_osif

o_osif

clk

reset

transitions occur only when

OS interface is ready

user logic

OS synchronization state machine

hardware thread

/ sem_wait

(C_SEM_A)

done = '1' /

run <= '0'

done = '0'/

run <= '1' / shm_read()

/ shm_write()

/ sem_post

(C_SEM_B)

run done

local
RAM

O
S

 I
n

te
r
fa

c
e

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 12

ReconOS API for Hardware Threads

■ VHDL function library
■ used similar to software API
■ may only be used inside OS

synchronization state machine

IDLE READ

POST

WRITE

RUN

i_osif

o_osif

clk

reset

transitions occur only when

OS interface is ready

user logic

OS synchronization state machine

hardware thread

/ sem_wait

(C_SEM_A)

done = '1' /

run <= '0'

done = '0'/

run <= '1' / shm_read()

/ shm_write()

/ sem_post

(C_SEM_B)

run done

local
RAM

O
S

 I
n

te
r
fa

c
e

64 bit PLB (memory bus)

i_
o

s
if

o
_

o
s
if

user logic

hardware thread

local
RAM

PLB slave
attachment

bus
master

controller

command decoder

O
S

 in
te

r
fa

c
e

to interrupt
controller

DCR slave
attachment

32 Bit DCR (control bus)

FIFO
manager

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 13

OS Interface

64 bit PLB (memory bus)

i_
o

s
if

o
_

o
s
if

user logic

hardware thread

local
RAM

PLB slave
attachment

bus
master

controller

command decoder

O
S

 in
te

r
fa

c
e

to interrupt
controller

DCR slave
attachment

32 Bit DCR (control bus)

FIFO
manager

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 13

OS Interface

 processes requests from
hardware thread
■ handles blocking and resuming of

hardware thread

64 bit PLB (memory bus)

i_
o

s
if

o
_

o
s
if

user logic

hardware thread

local
RAM

PLB slave
attachment

bus
master

controller

command decoder

O
S

 in
te

r
fa

c
e

to interrupt
controller

DCR slave
attachment

32 Bit DCR (control bus)

FIFO
manager

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 13

OS Interface

 processes requests from
hardware thread
■ handles blocking and resuming of

hardware thread

 relays OS object interactions to
CPU
■ DCR interface with bus-addressable

registers
■ dedicated interrupt

64 bit PLB (memory bus)

i_
o

s
if

o
_

o
s
if

user logic

hardware thread

local
RAM

PLB slave
attachment

bus
master

controller

command decoder

O
S

 in
te

r
fa

c
e

to interrupt
controller

DCR slave
attachment

32 Bit DCR (control bus)

FIFO
manager

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 13

OS Interface

 processes requests from
hardware thread
■ handles blocking and resuming of

hardware thread

 relays OS object interactions to
CPU
■ DCR interface with bus-addressable

registers
■ dedicated interrupt

 executes memory accesses
■ PLB master interface
■ direct access to entire system’s

address space (memory and
peripherals)

64 bit PLB (memory bus)

i_
o

s
if

o
_

o
s
if

user logic

hardware thread

local
RAM

PLB slave
attachment

bus
master

controller

command decoder

O
S

 in
te

r
fa

c
e

to interrupt
controller

DCR slave
attachment

32 Bit DCR (control bus)

FIFO
manager

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 13

OS Interface

 processes requests from
hardware thread
■ handles blocking and resuming of

hardware thread

 relays OS object interactions to
CPU
■ DCR interface with bus-addressable

registers
■ dedicated interrupt

 executes memory accesses
■ PLB master interface
■ direct access to entire system’s

address space (memory and
peripherals)

 dedicated FIFO channels
■ provide high-throughput hardware

support for message passing

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 14

Delegate Threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 14

 basic mechanism
■ a delegate thread in software is associated with every hardware thread
■ the delegate thread calls the OS kernel on behalf of the hardware thread
■ all kernel responses are relayed back to the hardware thread

Delegate Threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 14

 basic mechanism
■ a delegate thread in software is associated with every hardware thread
■ the delegate thread calls the OS kernel on behalf of the hardware thread
■ all kernel responses are relayed back to the hardware thread

 advantages
■ no modification of the kernel required
■ extremely flexible
■ transparent to kernel and

other threads

Delegate Threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 14

 basic mechanism
■ a delegate thread in software is associated with every hardware thread
■ the delegate thread calls the OS kernel on behalf of the hardware thread
■ all kernel responses are relayed back to the hardware thread

 advantages
■ no modification of the kernel required
■ extremely flexible
■ transparent to kernel and

other threads

 drawbacks
■ increased overhead due to

interrupt processing and
context switch

Delegate Threads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 15

Hardware Support for Message Passing

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 15

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 15

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 15

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 15

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 15

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration
■ message passing: OS overhead (interrupt processing in CPU)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 15

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration
■ message passing: OS overhead (interrupt processing in CPU)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 16

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration
■ message passing: OS overhead (interrupt processing in CPU)

 direct connection of HW threads via buffered point-to-point links
 transparently supported by existing message queue API
 message routing dependent on current thread location (planned)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 16

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration
■ message passing: OS overhead (interrupt processing in CPU)

 direct connection of HW threads via buffered point-to-point links
 transparently supported by existing message queue API
 message routing dependent on current thread location (planned)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 16

Hardware Support for Message Passing

 direct HW thread-to-thread communication can be inefficient
■ shared memory: external memory access + bus arbitration
■ message passing: OS overhead (interrupt processing in CPU)

 direct connection of HW threads via buffered point-to-point links
 transparently supported by existing message queue API
 message routing dependent on current thread location (planned)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 17

Outline

 motivation

 high-level communication and synchronization

 low-level communication and synchronization

 performance & overheads

 conclusion & outlook

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 18

Synchronization Overheads

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 18

Synchronization Overheads

 synthetic hardware and software
threads
■ semaphore and mutex processing time

(post → wait / unlock → lock)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 18

Synchronization Overheads

 synthetic hardware and software
threads
■ semaphore and mutex processing time

(post → wait / unlock → lock)
 OS calls involving hardware exhibit

higher latencies
 limited impact on system performance

■ logic resources mainly used for heavy data-
parallel processing

■ less synchronization-intensive control
dominated code

OS
interface

hw
thread

system buses (PLB/DCR)

other
peripherals

memory
controller

DRAM

OS
interface

hw
thread

CPU

FIFO

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

19

hardware
FIFOs

software
mailboxes

OS
interface

hw
thread

system buses (PLB/DCR)

other
peripherals

memory
controller

DRAM

OS
interface

hw
thread

CPU

FIFO

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

19

hardware
FIFOs

software
mailboxes

OS
interface

hw
thread

system buses (PLB/DCR)

other
peripherals

memory
controller

DRAM

OS
interface

hw
thread

CPU

FIFO

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

19

hardware
FIFOs

software
mailboxes

OS
interface

hw
thread

system buses (PLB/DCR)

other
peripherals

memory
controller

DRAM

OS
interface

hw
thread

CPU

FIFO

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

19

hardware
FIFOs

software
mailboxes

OS
interface

hw
thread

system buses (PLB/DCR)

other
peripherals

memory
controller

DRAM

OS
interface

hw
thread

CPU

FIFO

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

19

hardware
FIFOs

software
mailboxes

OS
interface

hw
thread

system buses (PLB/DCR)

other
peripherals

memory
controller

DRAM

OS
interface

hw
thread

CPU

FIFO

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Communication Performance

 comparison between memory
access and FIFO transfers
■ FIFOs are faster for HW thread to

HW thread communications (+40%)
■ no additional load on memory

system or CPU
■ improves thread-parallelism

19

hardware
FIFOs

software
mailboxes

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Conclusion & Outlook

20

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Conclusion & Outlook

 common set of high-level communication and synchronization
objects for hard- and software unifies programming model

 existing operating systems can be extended with mechanisms
for low-level communication and synchronization between
hardware threads and kernel

 acceptable performance in benchmarks and larger case studies

20

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Conclusion & Outlook

 common set of high-level communication and synchronization
objects for hard- and software unifies programming model

 existing operating systems can be extended with mechanisms
for low-level communication and synchronization between
hardware threads and kernel

 acceptable performance in benchmarks and larger case studies

 future work
■ extension of hardware FIFOs to allow direct access from software threads
■ fusion of shared memory and message-passing interfaces to hardware

threads

20

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 21

Thank you

www.reconos.de

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 22

command decoder
23%

bus slave registers
12%

fifo manager
5%

PLB IPIF
59%

OS Overheads (Area)

 total OSIF slice count: 1213 slices
■ most of this taken up by PLB IPIF logic

PLB IPIF
fifo manager
bus slave registers
command decoder
bus master control

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 23

Supported OS Calls

 Semaphores (counting and binary)
■ reconos_semaphore_post()
■ reconos_semaphore_wait()

 Mutexes
■ reconos_mutex_lock()
■ reconos_mutex_trylock()
■ reconos_mutex_unlock()
■ reconos_mutex_release()

 Condition Variables
■ reconos_cond_wait()
■ reconos_cond_signal()
■ reconos_cond_broadcast()

 Mailboxes
■ reconos_mbox_get()
■ reconos_mbox_tryget()
■ reconos_mbox_put()
■ reconos_mbox_tryput()

 Memory access
■ reconos_read()
■ reconos_write()
■ reconos_read_burst()
■ reconos_write_burst()

handled in
software

(via delegate
thread)

handled in
hardware

(via system
bus / point-

to-point
links)

basic synchronization
primitives

synchronize access to
mutual exclusive operations

(critical sections)

allow waiting until arbitrary
conditions are satisfied

CPU-independent access
to the entire system address

space (memory and peripherals)

message passing primitives
(blocking and not blocking)

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 24

ReconOS Software API (POSIX)

mqd_t my_mbox;
sem_t my_sem;

pthread_t thread;
pthread_attr_t thread_attr;

...

pthread_attr_init(&thread_attr);

pthread_create(
 &thread, // thread object
 &thread_attr, // attributes
 thread_entry, // entry point
 (void *) data // entry data
);

mqd_t my_mbox;
sem_t my_sem;
reconos_res_t thread_resources[2] = {
	 { &my_mbox, POSIX_MQD_T },
	 { &my_sem, POSIX_SEM_T }
};

rthread thread;
pthread_attr_t thread_swattr;
rthread_attr_t thread_hwattr;
...

pthread_attr_init(&thread_swattr);
rthread_attr_init(&thread_hwattr);
rthread_attr_setslotnum(&thread_hwattr, 0);
rthread_attr_setresources(&thread_hwattr,
 thread_resources, 2);

rthread_create(
 &thread, // thread object
 &thread_swattr, // software attributes
 &thread_hwattr, // hardware attributes
 (void *) data // entry data
);

 standard POSIX thread creation ReconOS hardware thread creation

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

25

HW
thread

command

data

busy/block

step

data

OSIF

step

HW thread OSIFstate = A CPU

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

25

HW
thread

command

data

busy/block

step

data

OSIF

step

cmd + data(0)

reconos call

state = B step = 0

HW thread OSIFstate = A CPU

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

25

HW
thread

command

data

busy/block

step

data

OSIF

step

cmd + data(0)

reconos call

state = B step = 0

cmd + data(1)

busy/block

state = B step = 1

HW thread OSIFstate = A CPU

function
call

state = B step = 1

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

25

HW
thread

command

data

busy/block

step

data

OSIF

step

cmd + data(0)

reconos call

state = B step = 0

cmd + data(1)

busy/block

state = B step = 1

HW thread OSIFstate = A CPU

function
call

state = B step = 1

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

25

HW
thread

command

data

busy/block

step

data

OSIF

step

cmd + data(0)

reconos call

state = B step = 0

cmd + data(1)

busy/block

state = B step = 1

HW thread OSIFstate = A CPU

unblock +
return value

call finished

state = B step = 2

return
value

function
call

state = B step = 1

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

25

HW
thread

command

data

busy/block

step

data

OSIF

step

cmd + data(0)

reconos call

state = B step = 0

cmd + data(1)

busy/block

state = B step = 1

HW thread OSIFstate = A CPU

state = C step = 0

unblock +
return value

call finished

state = B step = 2

return
value

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 26

Toolchain

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 26

Toolchain

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 26

Toolchain

 software threads are written in C
u using the eCos software API

 hardware threads are written in
VHDL

u using the ReconOS VHDL API

 architecture generation
u automatically inserts OS interfaces

and hardware threads into Xilinx
EDK platform templates

u configures and builds static eCos
library

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 26

Toolchain

 software threads are written in C
u using the eCos software API

 hardware threads are written in
VHDL

u using the ReconOS VHDL API

 architecture generation
u automatically inserts OS interfaces

and hardware threads into Xilinx
EDK platform templates

u configures and builds static eCos
library

E.Lübbers & M.Platzner, University of Paderborn ERSA ‘08 26

Toolchain

 software threads are written in C
u using the eCos software API

 hardware threads are written in
VHDL

u using the ReconOS VHDL API

 architecture generation
u automatically inserts OS interfaces

and hardware threads into Xilinx
EDK platform templates

u configures and builds static eCos
library

 eCos extensions
u hardware thread object encapsulating delegate thread and OS interface “driver”
u profiling support to track the state of the hardware threads' OS synchronization state

machines

E.Lübbers & M.Platzner, University of Paderborn 27

 three threads
■ capture image from Ethernet
■ apply LaPlacian filter
■ display image on VGA monitor

 threads communicate through
shared memory
■ image resolution: 320x240 pixels, 8

bit greyscale
■ image data organized into blocks

(e.g. 40 lines = 1 block)
■ a block is protected by two

semaphores
 “ready” semaphore: data can be safely

written into this block
 “new” semaphore: new data is available

in this block

Case Study - Image Processing Filter

0

7,5

15,0

22,5

30,0

3 5

25,425,5
23,223,5

18,619,0

8,5

16,2
fra

m
es

/s

window size

SW-SW-SW SW-HW-SW
SW-HW-HW SW-HW-HW double buffered

E.Lübbers & M.Platzner, University of Paderborn 27

 three threads
■ capture image from Ethernet
■ apply LaPlacian filter
■ display image on VGA monitor

 threads communicate through
shared memory
■ image resolution: 320x240 pixels, 8

bit greyscale
■ image data organized into blocks

(e.g. 40 lines = 1 block)
■ a block is protected by two

semaphores
 “ready” semaphore: data can be safely

written into this block
 “new” semaphore: new data is available

in this block

Case Study - Image Processing Filter

SW-SW-SW SW-HW-SW
SW-HW-HW SW-HW-HW double buffered

E.Lübbers & M.Platzner, University of Paderborn 28

0

7,5

15,0

22,5

30,0

3 5

25,425,5

23,223,5

18,619,0

8,5

16,2

fra
m

es
/s

window size

SW-SW-SW
SW-HW-SW
SW-HW-HW
SW-HW-HW double buffered

Case Study - Results

E.Lübbers & M.Platzner, University of Paderborn 28

SW-SW-SW
SW-HW-SW
SW-HW-HW
SW-HW-HW double buffered

Case Study - Results

