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software (POSIX, C) hardware (ReconOS, VHDL)
sem_post() reconos_sem_post()

pthread_mutex_lock() reconos_mutex_lock()
mq_send() reconos_mbox_put()

value = *ptr reconos_read()
pthread_exit() reconos_thread_exit()

examples for API functions used by threads
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lock()
lock()

Thread B

unlock()

 mutexes
■ specific mechanism to protect critical sections 

(e.g. read-modify-write to shared memory)
■ a thread can only release a mutex it “owns” (has 

previously locked)
■ supported by both hardware and software threads

 thread termination
■ a thread can block until another thread exits
■ currently, only software threads can join(), but all 

threads can exit()
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 message queues
■ can block if queue is empty / full
■ combined communication and 

synchronization primitive
■ supported by both hardware and software 

threads
■ dedicated hardware FIFOs for hardware 

threads
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 a hardware thread consists of two parts

■ an OS synchronization state machine
 synchronizes thread with 

operating system calls 
 serializes access to OS 

objects via the OS interface
 can be blocked by the 

OS interface

■ parallel “user processes”
 communicate with OS 

synchronization state machine
 can directly access local 

memory blocks
 are not necessarily blocked
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ReconOS API for Hardware Threads

■ VHDL function library
■ used similar to software API
■ may only be used inside OS 

synchronization state machine
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OS Interface

 processes requests from 
hardware thread
■ handles blocking and resuming of 

hardware thread

 relays OS object interactions to 
CPU
■ DCR interface with bus-addressable 

registers
■ dedicated interrupt

 executes memory accesses
■ PLB master interface
■ direct access to entire system’s 

address space (memory and 
peripherals)

 dedicated FIFO channels
■ provide high-throughput hardware 

support for message passing
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 basic mechanism
■ a delegate thread in software is associated with every hardware thread
■ the delegate thread calls the OS kernel on behalf of the hardware thread
■ all kernel responses are relayed back to the hardware thread

 advantages
■ no modification of the kernel required
■ extremely flexible
■ transparent to kernel and 

other threads

 drawbacks
■ increased overhead due to

interrupt processing and
context switch

Delegate Threads
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Synchronization Overheads

 synthetic hardware and software 
threads
■ semaphore and mutex processing time

(post → wait / unlock → lock)
 OS calls involving hardware exhibit 

higher latencies
 limited impact on system performance

■ logic resources mainly used for heavy data-
parallel processing

■ less synchronization-intensive control 
dominated code
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Communication Performance

 comparison between memory 
access and FIFO transfers
■ FIFOs are faster for HW thread to 

HW thread communications (+40%)
■ no additional load on memory 

system or CPU
■ improves thread-parallelism
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Conclusion & Outlook

 common set of high-level communication and synchronization 
objects for hard- and software unifies programming model

 existing operating systems can be extended with mechanisms 
for low-level communication and synchronization between 
hardware threads and kernel

 acceptable performance in benchmarks and larger case studies

 future work
■ extension of hardware FIFOs to allow direct access from software threads
■ fusion of shared memory and message-passing interfaces to hardware 

threads

20
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Thank you
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command decoder
23%

bus slave registers
12%

fifo manager
5%

PLB IPIF
59%

OS Overheads (Area)

 total OSIF slice count: 1213 slices
■ most of this taken up by PLB IPIF logic

PLB IPIF
fifo manager
bus slave registers
command decoder
bus master control
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Supported OS Calls

 Semaphores (counting and binary)
■ reconos_semaphore_post()
■ reconos_semaphore_wait() 

 Mutexes
■ reconos_mutex_lock()
■ reconos_mutex_trylock()
■ reconos_mutex_unlock()
■ reconos_mutex_release()

 Condition Variables
■ reconos_cond_wait()
■ reconos_cond_signal()
■ reconos_cond_broadcast()

 Mailboxes
■ reconos_mbox_get()
■ reconos_mbox_tryget()
■ reconos_mbox_put()
■ reconos_mbox_tryput()

 Memory access
■ reconos_read()
■ reconos_write()
■ reconos_read_burst()
■ reconos_write_burst()

handled in 
software

(via delegate 
thread)

handled in 
hardware

(via system 
bus / point-

to-point 
links)

basic synchronization
primitives

synchronize access to
mutual exclusive operations

(critical sections)

allow waiting until arbitrary
conditions are satisfied

CPU-independent access
to the entire system address

space (memory and peripherals)

message passing primitives 
(blocking and not blocking)
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ReconOS Software API (POSIX)

mqd_t my_mbox;
sem_t my_sem;

pthread_t      thread;
pthread_attr_t thread_attr;

...

pthread_attr_init(&thread_attr);

pthread_create(  
   &thread,                  // thread object
   &thread_attr,             // attributes
   thread_entry,             // entry point
   ( void * ) data           // entry data
);

mqd_t my_mbox;
sem_t my_sem;
reconos_res_t thread_resources[2] = { 
	 { &my_mbox, POSIX_MQD_T },  
	 { &my_sem,  POSIX_SEM_T } 
};

rthread        thread;
pthread_attr_t thread_swattr;
rthread_attr_t thread_hwattr;
...

pthread_attr_init(&thread_swattr);
rthread_attr_init(&thread_hwattr);
rthread_attr_setslotnum(&thread_hwattr, 0);
rthread_attr_setresources(&thread_hwattr,
                          thread_resources, 2);

rthread_create(  
   &thread,                  // thread object
   &thread_swattr,           // software attributes
   &thread_hwattr,           // hardware attributes
   ( void * ) data           // entry data
);

 standard POSIX thread creation  ReconOS hardware thread creation
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 software threads are written in C
u using the eCos software API

 hardware threads are written in 
VHDL

u using the ReconOS VHDL API

 architecture generation
u automatically inserts OS interfaces

and hardware threads into Xilinx
EDK platform templates

u configures and builds static eCos 
library
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Toolchain

 software threads are written in C
u using the eCos software API

 hardware threads are written in 
VHDL

u using the ReconOS VHDL API

 architecture generation
u automatically inserts OS interfaces

and hardware threads into Xilinx
EDK platform templates

u configures and builds static eCos 
library

 eCos extensions
u hardware thread object encapsulating delegate thread and OS interface “driver”
u profiling support to track the state of the hardware threads' OS synchronization state 

machines
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 three threads
■ capture image from Ethernet 
■ apply LaPlacian filter
■ display image on VGA monitor

 threads communicate through 
shared memory
■ image resolution: 320x240 pixels, 8 

bit greyscale
■ image data organized into blocks 

(e.g. 40 lines = 1 block)
■ a block is protected by two 

semaphores
 “ready” semaphore: data can be safely 

written into this block
 “new” semaphore: new data is available 

in this block

Case Study - Image Processing Filter
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