Communication and Synchronization
in Multithreaded Reconfigurable

Computing Systems

Enno Lubbers and Marco Platzner
Computer Engineering Group
University of Paderborn

{enno.luebbers, platzner}Qupb.de

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft




Design of CPU/FPGA Systems

® hardware accelerators typically integrated as slave
COProcessors

® hardware/software boundary explicit
= tedious to program
= portability issues
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Multithreaded Programming

“ h

application

- /

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08



Multithreaded Programming
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Multithreaded Programming
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Multithreaded Programming
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Multithreaded Programming
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Multithreaded Programming

® communication and synchronization
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Multithreaded Programming

® communication and synchronization
= high-level (between the threads themselves)
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Multithreaded Programming

® communication and synchronization
= high-level (between the threads themselves)
= low-level (between hardware threads and operating system)
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Outline

® high-level communication and synchronization

® low-level communication and synchronization

= performance & overheads

® conclusion & outlook
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Programming Model

THREAD_A

= applications are
. . . hared 4
divided into threads —> | > rﬁefnrﬁry |

= threads communicate "
via operating system SEM_NEW
objects
= semaphores

= mailboxes
= shared memory L |

SEM_READY

L

MBOX_IN2 \/ MBOX_DATA \/ MBOX_OUT

" .. THREAD_B THREAD_C
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Programming Model

THREAD_A

= applications are
. . . ‘ hared
divided into threads — | g TN

. MBOX_IN1 |
® threads communicate - \-«‘//

via operating system SEM_NEW
objects

= semaphores

= mailboxes

= shared memory

SEM_READY

MBOX_IN2 MBOX_DATA MBOX_OUT
" .. THREAD_B THREAD_C

examples for API functions used by threads

software (POSIX, C) hardware (ReconOS, VHDL)

sem post () reconos sem post ()

pthread mutex lock() reconos mutex lock ()
mg send () reconos mbox put ()

value = *ptr reconos read()

pthread exit () reconos thread exit ()
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High-Level Synchronization in ReconOS

N Semaphores (Thread A) (Thread B)

= general mechanism to synchronize execution

= blocking wait() operation, non-blocking post() ,
operation '

= supported by both hardware and software threads ‘
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High-Level Synchronization in ReconOS

H Semaphores (Thread A) (Thread B

= blocking wait() operation, non-blocking post()
operation

= supported by both hardware and software threads ‘

= general mechanism to synchronize execution

® mutexes (Thread A) [Thread B

= supported by both hardware and software threads

= specific mechanism to protect critical sections
(e.g. read-modify-write to shared memory)
= a thread can only release a mutex it “owns” (has
previously locked) @
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High-Level Synchronization in ReconOS

(Thread A) (Thread B)

® semaphores
= general mechanism to synchronize execution

= blocking wait() operation, non-blocking post()
operation

= supported by both hardware and software threads

® mutexes

= specific mechanism to protect critical sections
(e.g. read-modify-write to shared memory)

= a thread can only release a mutex it “owns” (has
previously locked)

= supported by both hardware and software threads

® thread termination
= a thread can block until another thread exits

= currently, only software threads can join(), but all
threads can exit()
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High-Level Communication in ReconOS

(Thread A) (Thread B)

® shared memory

= all threads have direct access to the entire
memory space

= accesses need to be synchronized using
semaphores or mutexes

= dedicated hardware support for burst
transfers
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High-Level Communication in ReconOS

(Thread A) (Thread B)

® shared memory

= all threads have direct access to the entire
memory space

= accesses need to be synchronized using
semaphores or mutexes

= dedicated hardware support for burst
transfers

¥ message queues
= can block if queue is empty / full

= combined communication and
synchronization primitive

= supported by both hardware and software
threads

= dedicated hardware FIFOs for hardware
threads
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Outline

® low-level communication and synchronization

= performance & overheads

® conclusion & outlook
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Hardware Architecture

= developed on Xilinx Virtex-Il Pro, Virtex-4 FX FPGAs
= based on CoreConnect bus topology
= OS kernel is eCos for PowerPC ported to Virtex

- - /0 controller Cmoﬁ;?;gr <|‘:|,> %X;renrgal
CPU ry
OS
kernel
system buses (PLB, DCR)

T

interrupt
controller

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08



Hardware Architecture
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Hardware Architecture
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Hardware Architecture
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Hardware Thread

~- hardware thread

OS synchronization state machine

done ='0"/
run <= '1'

/

N run <= '0'
/ shm_write()

‘ /
@ transitions occur only when
OS interface is ready

done

OS Interface

user logic
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Hardware Thread

® a hardware thread consists of two parts

~- hardware thread

OS synchronization state machine

done = '0'/
run <=" / shm_read()
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/
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Hardware Thread

® a hardware thread consists of two parts

= an OS synchronization state machine - hardware thread

® synchronizes thread with
operating system calls

® serializes access to OS
objects via the OS interface

® can be blocked by the
OS interface
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Hardware Thread
® a hardware thread consists of two parts

= an OS synchronization state machine - hardware thread

. . OS synchronization state machine
® synchronizes thread with
operating system calls

® serializes access to OS
objects via the OS interface ‘:ﬁﬂ‘: o\ 7enmirane

® can be blocked by the _osl N P

OS interface @

= parallel “user processes” -
e communicate with OS S Inaracaiar A

synchronization state machine

® can directly access local
memory blocks

® are not necessarily blocked
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ReconOS API for Hardware Threads

R O S

osif_fsm: process(clk, reset)
begin
if (reset = '1’) then
state <= IDLE;
run <= '0°;
|reconos reset|(o_osif, i_osif);
elsif rising_edge(clk) then
|reconos_begin(o_osif, i_osif);
if| reconos_ready|(i_osif) then
case stafe Is
when IDLE =>
| reconos_sem_wait/(o_osif , i_osif , CSEMA);
state <= READ;

when READ =>

l[reconos_shm_read_burst| o_osif, i_osif,
local_ address
global_ address);

state <= RUN;

when RUN =>
run <= '17;
if done = 1’ then
run <= '07;
state <= WRITE;
end if;

when WRITE =>

Ireconos shm_write._ burstl(o osif, i_osif,
local_ address
global_address);

state <= POST;
when POST =>

| reconos_sem. gos {o osif, i_osif, C.SEMB);
state <= ’

when others => null;
end case;
end if;
end if;
end process;
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OS Interface

= VVHDL function library
= used similar to software API

= may only be used inside OS
synchronization state machine

~- hardware thread

OS synchronization state machine

/ sem_wait
(C_SEM_A)

done ="'0"
run <=1
-\
N

|
,‘i

done=""/

run <= '0' -7

|
I / shm_read()

/ shm_write()

transitions occur only when
OS interface is ready

user logic
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OS Interface
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32 Bit DCR (control bus)
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OS Interface

B processes requests from
hardware thread

= handles blocking and resuming of
hardware thread
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OS Interface

B processes requests from
hardware thread

= handles blocking and resuming of
hardware thread

® relays OS object interactions to
CPU

= DCR interface with bus-addressable
registers

= dedicated interrupt
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OS Interface

B processes requests from
hardware thread 64 bit PLB (memory bus) 32 Bit DCR (control bus)

= handles blocking and resuming of % E )
hardware thread > —
{ PLB slave mt;l;fer DCR slave}

attachment attachment

il

aoevlul SO

® relays OS object interactions to controller
CPU ¢ ¢

= DCR interface with bus-addressable to interrupt
registers controller

= dedicated interrupt

command decoder manager

{ FIFO

B executes memory accesses

= PLB master interface

= direct access to entire system’s
address space (memory and
peripherals)

| T
hardware thread

to/from other threads
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OS Interface

B processes requests from
hardware thread 64 bit PLB (memory bus) 32 Bit DCR (control bus)

= handles blocking and resuming of y = B ) = B "
hardware thread { = _= = _=

PLB slave mt;l;fer DCR slave
attachment attachment

® relays OS object interactions to controller
CPU ¢ ¢

= DCR interface with bus-addressable to interrupt
registers controller

= dedicated interrupt

aoeLIdulI SO

{ FIFO

command decoder manager

B executes memory aCCesses
= PLB master interface

= direct access to entire system’s
address space (memory and
peripherals)

® dedicated FIFO channels “ E ﬁ

= provide high-throughput hardware hardware thread
support for message passing to/from other threads
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Delegate Threads
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Delegate Threads

® basic mechanism

= a delegate thread in software is associated with every hardware thread
= the delegate thread calls the OS kernel on behalf of the hardware thread
= all kernel responses are relayed back to the hardware thread
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Delegate Threads

® basic mechanism

= a delegate thread in software is associated with every hardware thread
= the delegate thread calls the OS kernel on behalf of the hardware thread
= all kernel responses are relayed back to the hardware thread

® advantages
= no modification of the kernel required
= extremely flexible

= transparent to kernel and

other threads

(

V

delegate
thread

software
. thread

RTOS kernel

th thread

E.LUbbers & M.Platzner, University of Paderborn ERSA ‘08




Delegate Threads

® pbasic mechanism
= a delegate thread in software is associated with every hardware thread
= the delegate thread calls the OS kernel on behalf of the hardware thread
= all kernel responses are relayed back to the hardware thread

® advantages
= no modification of the kernel required
= extremely flexible

= transparent to kernel and
other threads

delegate
= drawbacks thread

= Increased overhead due to
interrupt processing and 1 hw thread

context switch ?

V

RTOS kernel
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Hardware Support for Message Passing

‘ \ other memory
G peripherals controller
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Hardware Support for Message Passing

‘ \ other memory
G peripherals controller
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hw hw hw
thread thread thread

®m direct HW thread-to-thread communication can be inefficient
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Hardware Support for Message Passing
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G peripherals con sl N D
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hw hw hw
thread thread thread

® direct HW thread-to-thread communication can be inefficient
= shared memory: external memory access + bus arbitration
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Hardware Support for Message Passing

other memory
peripherals controller

g 1C

(O] OS Q)
interface interface interfate

system bus

hw hw hw
thread thread thread

® direct HW thread-to-thread communication can be inefficient
= shared memory: external memory access + bus arbitration
= message passing: OS overhead (interrupt processing in CPU)
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Hardware Support for Message Passing
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interface interface interfate

system bus
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thread thread thread

® direct HW thread-to-thread communication can be inefficient
= shared memory: external memory access + bus arbitration
= message passing: OS overhead (interrupt processing in CPU)
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Hardware Support for Message Passing

CPU other memory
peripherals controller
system bus

W .

0OS
interface interface interface

hw hw hw
thread thread thread

® direct HW thread-to-thread communication can be inefficient
= shared memory: external memory access + bus arbitration
= message passing: OS overhead (interrupt processing in CPU)

® direct connection of HW threads via buffered point-to-point links
® transparently supported by existing message queue API
® message routing dependent on current thread location (planned)
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Hardware Support for Message Passing

memory
controller

g

A
OS
\

erface

hw hw
thread thread

® direct HW thread-to-thread communication can be inefficient
= shared memory: external memory access + bus arbitration
= message passing: OS overhead (interrupt processing in CPU)

® direct connection of HW threads via buffered point-to-point links
® transparently supported by existing message queue API
® message routing dependent on current thread location (planned)
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Outline

= performance & overheads

® conclusion & outlook
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Synchronization Overheads

SW thread I (g» SW thread

HW thread HW thread
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Synchronization Overheads

= synthetic hardware and software
threads

= semaphore and mutex processing time
(post — wait / unlock — lock)

SW thread SW thread

1 /5\

HW thread HW thread
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Synchronization Overheads

= synthetic hardware and software
threads

= semaphore and mutex processing time
(post — wait / unlock — lock)

® OS calls involving hardware exhibit 4@;;
/

higher latencies

® [imited impact on system performance

= |ogic resources mainly used for heavy data- HW thread
parallel processing

= |ess synchronization-intensive control
dominated code

SW thread SW thread

HW thread

with data cache without data cache
Configuration  semaphore  mutex | semaphore  mutex
SW — SW 3.39 4.53 29.05 43.99
SW — HW 4.71 6.29 30.49 47.43
HW — SW 10.74 14.49 82.90  100.23
HW — HW 11.90 14.60 83.13  101.49

All values are given in us
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Communication Performance

with data cache without data cache

Operation S MB/s S MB/s

MEM—HW (burst read) 45.74  170.80 46.41 168.34

HW—MEM (burst write) 40.54 192.71 40.55 192.66
MEM—SW—MEM (memcopy) 132.51 58.96 625.00 12.50

hardware ... y HW—HW (mbox read) 61.42 127.20 61.42 127.20
HW—HW (mbox write) 61.45 127.14 61.45 127.14

software .» SW—HW (mbox read) 58500 0.13 | 374000 0.02
mailboxes HW—SW (mbox write) 58510 0.13 | 374000 0.02

All operations were run for 8 kBytes of data

other memory DRAM
peripherals controller
system buses (PLB/DCR)
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Communication Performance

with data cache without data cache

Operation LS MB/s US MB/s

MEM—HW (burst read) 45.74  170.80 46.41 168.34

HW —MEM (burst write) 40.54 192.71 40.55 192.66

MEM—SW—MEM (memcopy) 132.51 58.96 | 625.00 12.50

hardware ... y HW—HW (mbOX read) 61.42 127.20 61.42 127.20

HW—HW (mbox write) 6145 127.14 61.45 127.14

software .y SW—HW (mbox read) 58500 0.13 | 374000 0.02
mailboxes HW—SW (mbox write) 58510 0.13 | 374000

All operations were run for 8 kBytes of data

hw
thread thread
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Communication Performance

Operation

with data cache

S

MB/s

without data cache
S MB/s

MEM—HW (burst read)
HW—MEM (burst write)

45.74
40.54

170.80
192.71

46.41 168.34
40.55 192.66

| MEM—SW—MEM (memcopy)

132.51

58.96

625.00 12.50

hardware ..» HW—HW (mbox read)
HW—HW (mbox write)

software .» SW—HW (mbox read)

mailboxes HW—SW (mbox write)

61.42
61.45
58500
58510

127.20
127.14
0.13
0.13

61.42 127.20
61.45 127.14
374000 0.02
374000 0.02

All operations were run for 8 kBytes of data
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ERSA ‘08

peripherals

system buses (PLB/DCR)

OS OS

hw
thread

hw
thread




Communication Performance

with data cache without data cache

Operation LS MB/s US MB/s

MEM—HW (burst read) 45.74  170.80 46.41 168.34

HW—MEM (burst write) 40.54 192.71 40.55 192.66
MEM—-SW—MEM (memcopy) 132.51 58.96 625.00 12.50

hardware ..»| HW—HW (mbox read) ) 61.42 127.20 61.42  127.20
HW—HW (mbox write) 6145 127.14 61.45 127.14
software .y SW—HW (mbox read) 58500 0.13 | 374000 0.02
mailboxes HW—SW (mbox write) 58510 0.13 | 374000 0.02

All operations were run for 8 kBytes of data

other memory DRAM
peripherals controller
system buses (PLB/DCR)
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Communication Performance

with data cache without data cache

Operation LS MB/s US MB/s

MEM—HW (burst read) 4574  170.80 46.41 168.34

HW—MEM (burst write) 40.54 192.71 40.55 192.66
MEM—SW—MEM (memcopy) 132.51 58.96 625.00 12.50

hardware ... y HW—HW (mbOX read) 61.42 127.20 61.42 127.20
HW—HW (mbox write) 6145 127.14 61.45 127.14

software _.y| SW—HW (mbox read) 58500 0.13 | 374000 0.02
mailboxes HW—SW (mbox write) 58510 0.13 | 374000 0.02

All operations were run for 8 kBytes of data

other memory
peripherals controller

hw hv
thread thread
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Communication Performance

Operation

with data cache

S

MB/s

without data cache

S

MB/s

MEM—HW (burst read)
HW—MEM (burst write)

MEM—SW—MEM (memcopy)

hardware .» HW—HW (mbox read)
HW—HW (mbox write)
software .y SW—HW (mbox read)

mailboxes HW—SW (mbox write)

45.74
40.54
132.51
61.42
61.45
58500
58510

170.80
192.71
58.96
127.20
127.14
0.13
0.13

46.41
40.55
625.00
61.42
61.45
374000
374000

168.34
192.66
12.50
127.20
127.14
0.02
0.02

All operations were run for 8 kBytes of data

B comparison between memory
access and FIFO transfers

= FIFOs are faster for HW thread to
HW thread communications (+40%)

= No additional load on memory
system or CPU

= improves thread-parallelism
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Conclusion & Outlook

= common set of high-level communication and synchronization
objects for hard- and software unifies programming model

® existing operating systems can be extended with mechanisms
for low-level communication and synchronization between
hardware threads and kernel

= acceptable performance in benchmarks and larger case studies
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Conclusion & Outlook

= common set of high-level communication and synchronization
objects for hard- and software unifies programming model

® existing operating systems can be extended with mechanisms
for low-level communication and synchronization between
hardware threads and kernel

= acceptable performance in benchmarks and larger case studies

® future work
= extension of hardware FIFOs to allow direct access from software threads

= fusion of shared memory and message-passing interfaces to hardware
threads
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Thank you
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OS Overheads (Area)

command dec
23%

PLB IPIF
fifo manager

| | bus slave registers
= total OSIF slice count: 1213 slices command decoder

= most of this taken up by PLB IPIF logic bus master control
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Supported OS Calls

Semaphores (counting and binary) | o A
« reconos_semaphore_post() basic synchronization

= reconos_semaphore_wait() primitives

Mutexes

= reconos_mutex_lock() synchronize access to

= reconos_mutex_trylock() mutual exclusive operations

= reconos_mutex_unlock() (critical sections)

= reconos_mutex_release() handled In
&

Condition Variables software

= reconos_cond_wait() allow waiting until arbitrary via delegate

= reconos_cond_signal() conditions are satisfied thread)

= reconos_cond_broadcast()

Mailboxes

reconos_mbox_get()
reconos_mbox_tryget() message passing primitives
reconos_mbox_put() (blocking and not blocking)
reconos_mbox_tryput()

Memory access
= reconos_read()
= reconos_write()
= reconos_read_burst()
= reconos_write burst()

) handled in
> hardware
(via system

CPU-independent access bus / pgint-
to the entire system address to-point
space (memory and peripherals) links)
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ReconOS Software API (POSIX)

®m standard POSIX thread creation = ReconOS hardware thread creation

mqd_t my_mbox; mqd_t my_mbox;
sem_t my_sem; sem_t my_sem;
reconos_res_t thread_resources[2] = {
{ &my_mbox, POSIX_MQD_T },
{ &my_sem, POSIX_SEM_T }
s

pthread_t thread; rthread thread;
pthread_attr_t thread_attr; pthread_attr_t thread_swattr;

rthread_attr_t thread_hwattr;

pthread_attr_init(&thread_attr); pthread_attr_init(&thread_swattr);

rthread_attr_init(&thread_hwattr);
rthread_attr_setslotnum(&thread_hwattr, 0);

rthread_attr_setresources(&thread_hwattr,
thread_resources, 2);

pthread_create( rthread_create(

&thread, // thread object &thread, // thread object
&thread_attr, // attributes &thread_swattr, // software attributes

thread_entry, // entry point &thread_hwattr, // hardware attributes
( void * ) data // entry data ( void * ) data // entry data

D D
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Multi-Cycle Commands

® transfer of multiple state = A (HW thread) ( OSIF ) C CPU )
parameters and

return values with a
single VHDL call

= distributes execution
of an FSM state
across multiple clock
cycles

command

data

thread (busy/block

step

data
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Multi-Cycle Commands

= transfer of multiple
parameters and
return values with a
single VHDL call

= distributes execution
of an FSM state
across multiple clock
cycles

state =B

command

data

thread | busy/block

step

data
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Multi-Cycle Commands

® transfer of multiple state = A CHW thread) ( OSIF ) C CPU )
parameters and
return values with a
single VHDL call o

® distributes execution omd + data(1)
of an FSM state
across multiple clock "~ busy/block "
cycles

command

data

thread (busy/block

step

data
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Multi-Cycle Commands

® transfer of multiple state = A CHW thread) ( OSIF ) C CPU )
parameters and
return values with a
single VHDL call o

® distributes execution omd + data(1)
of an FSM state
across multiple clock busy/block ~
cycles

state = B cmd + data(0)

function
call

command

data

thread (busy/block

step

data
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= transfer of multiple
parameters and

Multi-Cycle Commands

return values with a

single VHDL call

state =B

m distributes execution

of an FSM state

across multiple clock
cycles

thread

command

data

| busy/block

step

data
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state = A CHWthread) [ OSIF )[ CPU )

reconos call

cmd + data(0)

cmd + data(1)

busy/block

function
call

unblock + _
return value

call finished
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= transfer of multiple
parameters and

Multi-Cycle Commands

return values with a

single VHDL call

state =B

m distributes execution

of an FSM state

across multiple clock
cycles

thread

command

<

data

busy/block

step

data
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state = A CHWthread) [ OSIF )[ CPU )

reconos call

cmd + data(0)

cmd + data(1)

busy/block

function
call

unblock + _
return value

call finished
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Toolchain

-

/-\

thread thread
shared .

>
memory
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Toolchain

ReconOS

g hardware
repository

thread (VHDL)

software
thread (C)

\-——/
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Toolchain

m software threads are written in C

u using the eCos software API software rzegzagf hardware
thread (C) e thread (VHDL)

® hardware threads are written In — T 4: N—
VHDL

u using the ReconOS VHDL API eCos library architecture
template

//

® architecture generation

u automatically inserts OS interfaces
and hardware threads into Xilinx
EDK platform templates

uconfigures and builds static eCos
library
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Toolchain

m software threads are written in C

u using the eCos software API

® hardware threads are written in
VHDL

u using the ReconOS VHDL API

® architecture generation

u automatically inserts OS interfaces
and hardware threads into Xilinx
EDK platform templates

uconfigures and builds static eCos
library
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software r':eg‘:i‘tgrs
thread (C) B

S——

hardware
thread (VHDL)

architecture
template

V7 TN

FPGA
toolflow

e

eCos library

compile & link
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executable ™
J
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Toolchain

m software threads are written in C

u using the eCos software API software ReconOS hardware

thread (C) epository thread (VHDL)

® hardware threads are written in “— T T —

VHDL

u using the ReconOS VHDL API eCos library architecture
template

® architecture generation \ 7/ \/: v

u automatically inserts OS interfaces
and hardware threads into Xilinx compile & link

FPGA
toolflow

EDK platform templates

uconfigures and builds static eCos \ +

library executable =~ ¥ 4— Ditstream

R : \‘_\‘l ——
= eCos extensions |
u hardware thread object encapsulating delegate thread and OS interface “driver”

u profiling support to track the state of the hardware threads' OS synchronization state
machines
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Case Study - Image Processing Filter

® three threads
= capture image from Ethernet
= apply LaPlacian filter
= display image on VGA monitor

® threads communicate through
shared memory

= image resolution: 320x240 pixels, 8
bit greyscale

= Image data organized into blocks
(e.g. 40 lines = 1 block)

= a block is protected by two
semaphores

® “ready” semaphore: data can be safely
written into this block

® “new” semaphore: new data is available
in this block

E.LUbbers & M.Platzner, University of Paderborn
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Case Study - Results
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Case Study - Results
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