
Communication and Synchronization in
Multithreaded Reconfigurable Computing Systems

Enno Lübbers and Marco Platzner
University of Paderborn

Email: {enno.luebbers, platzner}@upb.de

Abstract—This paper describes an approach to provide com-
munication and synchronization services to hardware threads
being executed on reconfigurable devices under the control of
a software-based operating system. This work aims at enabling
hardware circuits to be modeled as active, independently execut-
ing threads with access to all operating system services, instead
of passive coprocessors that can simply be called from software.

Communication and synchronization in a multithreaded re-
configurable system poses a challenge on two different levels:
First, hardware circuits need to communicate and synchronize
on a low level with the operating system kernel. Second, inter-
thread communication and synchronization as the basic services
provided by the multithreaded programming model need spe-
cial consideration when applied to reconfigurable devices. We
describe the concepts and methods to provide these services as
implemented in the ReconOS operating system, and quantify the
efficiency of the proposed techniques.

I. INTRODUCTION

Design methodologies for embedded systems involving re-
configurable logic have not kept pace with the increasing
complexity of modern platform FPGAs. The prevalent design
technique of modeling hardware accelerators as passive co-
processors to the system CPU is not able to exploit the full
potential of modern devices in a scalable way.

At the same time, the advent of multi-core processors both
in the desktop and embedded computing domains aggres-
sively promotes the use of the multithreaded programming
model as a means of segmenting computations into a set
of independent execution units. In the software world, there
exist a multitude of abstractions and established APIs such as
OpenMP, POSIX threads and others, which allow application
designers to express the parallelism inherent in the applied
algorithms in terms of independent threads of execution. This
programming model is flexible enough to be supported across
many application domains, from distributed high-performance
computing clusters, multi-core desktop CPUs, over gaming
consoles to embedded systems employing multi-core DSPs.
Extending this programming model to the design of recon-
figurable systems will significantly reduce design complexity,
support reusability, facilitate design space exploration as well
as promote portability.

The operating system ReconOS [1] builds on top of an
existing (real-time) operating system, modifying it to support
hardware threads. ReconOS uses and extends the existing,
established API of embedded real-time operating systems as
an abstraction layer to enable transparent thread-to-thread
communication regardless of the hw/sw partitioning. Software

threads run directly on the CPU, while hardware components
access the operating system services through an RPC-like
mechanism using the same set of APIs that is available to
software threads.

The main contribution of this paper is the description of
concepts and methods used by ReconOS to provide flexible
synchronization and communication mechanisms for multi-
threaded hardware/software systems on both the level of the
programming model as well as the low-level implementation
of the hardware/software interface.

The remainder of this paper is structured as follows: Section
II reviews related work. A general overview of the ReconOS
architecture is given in Section III. Section IV details the low-
level synchronization and communication mechanisms that
connect hardware threads to the operating system, while Sec-
tion V describes the high-level abstractions for synchronization
and communication provided by the programming model.
Experimental results acquired from a prototype implementa-
tion are presented and analyzed in Section VI. Section VII
summarizes the results of this work and points to ongoing
and future work.

II. RELATED WORK

In recent years, considerable research has been carried out
in the field of operating systems for reconfigurable com-
puting. Brebner [2] was the first to discuss the notion of
hardware multitasking and supporting reconfigurable devices
with operating system services. In the following years, most
efforts focused on single problems and techniques to manage
hardware processes as resources. Examples are the integrated
resource management and scheduling by Danne et al. [3],
and the services for task relocation and preemption using
partial reconfiguration by Hinkelmann et al. [4]. However,
these approaches did not try to integrate hardware processes
as independent execution units into an operating system.
An example for such an integrated approach is shown in
Walder et al. [5], where a hybrid system composed of a CPU
and reconfigurable logic manages tasks that execute in both
software and hardware and access the same operating system
resources.

Recently, some authors presented extensions of Linux-
based operating systems that facilitate communication
between software threads and hardware processes.
Kosciuszkiewicz et al. [6] build on top of an existing
Linux operating system kernel and try to model hardware

In Proceedings of the 8th International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA), Las Vegas, July 2008



tasks as a drop-in replacement for software tasks, maximizing
transparency. Processes executing in the FPGA’s fabric appear
as regular threads to the operating system kernel. However,
the existing implementation is limited to thread interactions
via FIFOs only, and does not exploit the fine-grained
parallelism of FPGAs, but maps threads to be executed in
hardware to PicoBlaze processors. Going a step further,
Bergmann et al. [7] wrap arbitrary hardware circuits in
software wrappers, so called ghost processes, which are
similar to ReconOS’ delegate threads (see Section III-A)
in that they provide a transparent interface for interactions
from the kernel and other threads. This approach also uses
FIFOs for communications, which are mapped into the
Linux file system [8]. So et al. [9][10] modify and extend a
standard Linux kernel with a hardware interface, providing
conventional UNIX IPC mechanisms to the hardware using
a message passing network. On the operating system level,
they also map inter-thread communication to FIFOs.

These approaches try to connect processes implemented in
reconfigurable hardware to singular existing operating system
objects to ease communication. That most approaches choose
a FIFO as the preferred means of communication hints at its
merits for thread-to-thread communication. However, not all
OS interactions of threads can be efficiently served with uni-
directional communication channels. We believe that support-
ing a unified programming model consisting of various objects
for communication, synchronization and thread control is es-
sential for exploiting the full potential of hybrid reconfigurable
hardware/software systems.

The hthreads project [11] follows a very similar approach
to ReconOS. Hardware threads are able to access various
OS functions through a dedicated hardware thread interface.
hthreads is based on the POSIX pthreads programming model
for both hard- and software threads and implements the OS
components managing synchronization and task scheduling as
hardware IP cores, sacrificing the flexibility of a software OS
kernel for exceptionally low response time and jitter [12].
The existing implementation, however, while employing a
sophisticated inter-thread memory model [13], is limited in
its data transfer throughput due to the employed bus topology.

III. SYSTEM ARCHITECTURE

This section outlines the ReconOS system architecture,
including the software architecture, the hardware platform,
and hardware threads. An example with two software and
two hardware threads is shown in Figure 1. A more detailed
overview over the ReconOS system can be found in [1].

A. Software Architecture

ReconOS uses the eCos [14] kernel for most of its software
implemented operating system services, such as the sched-
uler or the synchronization mechanisms. Software threads are
created and executed as regular eCos threads on the system
CPU. They access the individual OS services through standard
C system calls. eCos provides both a native API as well as
compatibility APIs, most importantly POSIX.

SW 
thread

delegate 
thread

POSIX compatibility 
library

scheduler mutexes semaphores

other libraries (networking, 
math, etc.)

...

delegate 
thread

SW 
thread

dynamic memory management drivers

main 
memory peripherals

eC
os

 K
er

ne
l

OSIF

HW 
thread

OSIF

HW 
thread

Fig. 1. ReconOS system architecture

In ReconOS, a dedicated software thread, the delegate, is
associated with every hardware thread. The delegate listens for
incoming OS requests from its hardware thread and executes
the system calls on its behalf. All OS interactions for hardware
threads (with a few exceptions) are managed by delegates,
which guarantees totally transparent inter-thread communica-
tion. No thread needs to know whether its communication
partners are executed in hardware or software. While this
approach provides great flexibility and extensibility, it comes
with an overhead due to interrupt processing and context
switching.

B. Hardware Platform

Designed for modern platform FPGAs such as the Xil-
inx Virtex-II Pro/Virtex-4 families, the ReconOS hardware
architecture provides the low-level communication channels
which connect the software part of an application, running
on the system’s CPU, with the hardware threads, located
in the FPGA’s configurable fabric, and other peripherals.
Using standard design tools together with ReconOS-specific
automation tools, the ReconOS hardware architecture builds
on the CoreConnect bus topology to link the system compo-
nents together. Two bus systems are employed: The Processor
Local Bus (PLB) is used for most data communications in
the system and connects the CPU, main memory, system
peripherals, and all hardware threads. To prevent prolonged
memory accesses from interfering with latency-sensitive OS
calls, the latter are routed through a separate low-overhead
bus, the Device Control Register (DCR) bus. This mechanism
provides bounded access times from the CPU to the hardware
threads regardless of memory bus load. At the same time it
offers the flexibility to remove the resource-intensive PLB bus
interface from hardware threads that do not need to access the
PLB while retaining the capability to call all supported OS
functions.

In Proceedings of the 8th International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA), Las Vegas, July 2008



IDLE READ

POST

WRITE

RUN

i_osif

o_osif

clk

reset

transitions occur only when 
OS interface is ready

user logic

OS synchronization state machine

hardware thread

/ sem_wait
(C_SEM_A)

done = '1' /
run <= '0'

done = '0'/
run <= '1' / shm_read()

/ shm_write()

/ sem_post
(C_SEM_B)

run done

local
RAM

O
S 

In
te

rfa
ce

Fig. 2. Hardware thread structure

C. Hardware Threads

A typical ReconOS hardware thread is implemented in
VHDL, which may be either hand-written or generated from
a higher level language or abstraction. Figure 2 shows the
general structure of a hardware thread, comprising the user
logic, the OS synchronization state machine, and an optional
local memory.

To enable access to OS services, ReconOS provides hard-
ware threads with a strictly defined ”hardware API”, which
closely resembles the software API provided by eCos. All
calls to this hardware API are encapsulated in the OS syn-
chronization state machine that communicates with and is
partly controlled by the OS interface (OSIF). Specifically,
the OSIF can prevent the OS synchronization state machine
from transitioning, thus effectively providing the semantics of
blocking function calls to hardware. Nonetheless, hardware
threads are not limited to the sequential execution dictated by
the centralized OS management. Usually, the OS synchroniza-
tion state machine controls the user logic, a set of processes
executing in parallel performing the thread’s actual processing
tasks. Thus, a designer can not only use hardware threads
to exploit coarse-grained thread-level parallelism by having
several hardware and possibly a software thread executing
truly in parallel, but also take advantage of more fine-grained
parallelism by placing multiple processes in the user logic.

Hardware threads have also access to a local memory.
This memory is primarily used for buffering main memory
accesses and increasing throughput by using burst transactions.
Optionally, the hardware thread may use the memory as a local
data storage.

IV. HARDWARE/SOFTWARE INTERFACE

To be able to model hardware circuits executing on recon-
figurable logic as threads, it is necessary to carefully define
mechanisms for low-level synchronization and communication
between the hardware circuitry and the operating system. In
ReconOS, this is the task of the operating system interface

64 bit PLB (memory bus)

i_osif

o_osif

user logic

hardware thread

local
RAM

PLB slave 
attachment

bus 
master 

controller

command decoder

O
S interface

to interrupt
controller

DCR slave 
attachment

32 Bit DCR (control bus)

FIFO 
manager

FIFO

FIFO

to/from other threads

Fig. 3. OSIF overview and interfaces

(OSIF). An overview of the OSIF’s structure and its interfaces
to the hardware thread, the system buses and the FIFO cores
is given in Figure 3. The OSIF is built from several modules
that together perform the following tasks:

A. Thread Supervision and Control

ReconOS provides hardware threads with a hardware API
that comes in the form of a function library which specifies
VHDL functions and procedures like semaphore_post()
or thread_exit(). A designer can use these procedures
inside the thread’s OS synchronization state machine to se-
quentially call operating system functions, much like a soft-
ware thread uses functions from the operating system’s C-API.
As a consequence, every state of the OS synchronization state
machine may contain at most one VHDL system call. The
VHDL procedures are purely combinational and communicate
with the OSIF through a set of incoming and outgoing signals,
which are assembled in the osif2task and task2osif
records shown in Table I.

The mechanisms that govern the OS call request-response
interactions between the OSIF and the hardware thread are
controlled by the command decoder module. This module
receives OS call requests from the hardware thread, decodes
them and initiates the appropriate processes to fulfill that
request. This may involve, for example, raising an interrupt
with the system CPU, initiating a bus master transfer or
feeding data into a FIFO.

Since the operating system executing on the CPU cannot
process OS calls within one clock cycle, the OSIF needs a
means to suspend state transitions of the thread’s OS synchro-
nization state machine. This is achieved by having the OS
synchronization state machine routinely check input signals
from the osif2task record before setting its next state.
This way, the OSIF can block the part of the hardware thread
that interacts with the operating system, which effectively
implements the semantics of blocking calls in VHDL.

The OSIF distinguishes between two conditions that can

In Proceedings of the 8th International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA), Las Vegas, July 2008



TABLE I
OSIF COMMUNICATION RECORDS

Signal Description
osif2task

command [0:7] requested OS call code
data [0:31] OS call arguments
request request strobe
error error flag

task2osif
data [0:31] return value of OS call
step [0:3] current step of multi-cycle command
valid indicates success of call
busy system buses are busy
blocking set while executing blocking OS calls

suspend state transitions: busy and blocking. The hardware
thread is held in the busy state as long as there are pend-
ing bus transfers as a result of a thread’s request. On the
other hand, a thread enters the blocked state after calling an
OS function that can lead to thread blocking, for example
semaphore_wait(). For the hardware thread, this distinc-
tion is arbitrary. The OSIF, however, manages blocking and
busy internally in different ways. The blocking signal is a
settable and resettable register that is indirectly controlled by
the CPU, while the busy signal is set asynchronously by the
PLB and DCR modules (see Section IV-B).

One of the purposes of the provided VHDL library is to
make writing the OS synchronization state machine as easy
and straightforward as possible. Thus we want to avoid any
complicated handshaking between state machine code and the
OSIF – the command decoder must be able to transparently
suspend the thread’s state machine without requiring the
thread designer to explicitly check for handshaking signals
in every transition. Hence, the busy or blocking signals must
be asserted in the same clock cycle as the thread’s request
signal. This is achieved by clocking the command decoder’s
state machine on the falling edge of the clock, which avoids
possible combinational loops and keeps all handshake signals
clock-synchronous.

Some of the supported OS calls require more than one 32
bit data argument. An example for such a call is a single-word
memory access (write()), which needs both an address and
a data argument. Other calls produce a return value, which
the hardware thread needs to wait for (e.g. mbox_get()).
Neither of these calls can be completed in a single clock
cycle. Furthermore, these calls need to interact with the OSIF
across multiple clock cycles, ruling out simply delaying the
state transition until the call completes and then resuming with
the next call.

To address these issues, the command decoder implements
a mechanism for multi-cycle commands. In the case of a single
call requiring different actions in subsequent clock cycles, the
VHDL procedure is simply evaluated for more than one clock
cycle, and only if all steps are completed successfully, the
OS synchronization state machine transitions to the next state.
Every multi-cycle VHDL API procedure takes one additional
argument, completed. This argument, implemented as a
VHDL variable, returns false as long as not all steps have

HW thread OSIF CPU

step = 0

step = 1

step = 2

step = 0

cmd + data(0)

cmd + data(1)

unblock +
return value

return value

function
call

busy/
block

reconos
call

call
finished

state = B

state = A step = 0

state = B

state = B

state = B

state = C

Fig. 4. Multi-cycle-command example

been completed. Only in the last step, completed is set to
true, which then prompts the state transition. Thus, a multi-
cycle command induces additional state which keeps track of
the currently executing step of the command. This state is kept
by the OSIF and transmitted via the step signal inside the
osif2task record to the VHDL procedure, which uses it to
perform the appropriate function for this step.

An example of this mechanism is depicted in Figure 4.
Here, an OS call taking two arguments and returning a third
value is requested, requiring three steps to complete. On
entering state B of the OS synchronization state machine, the
hardware thread invokes the appropriate VHDL procedure,
which transmits the first (state B, step 0) and second (state
B, step 1) argument. The OSIF then blocks the thread’s
OS synchronization state machine by setting the busy and/or
blocking signals and relays the OS call to the CPU, where the
associated delegate thread executes it. Upon returning from the
software OS call, the OSIF unblocks the hardware thread and
passes the return value in state B, step 2, where it is stored by
the same VHDL procedure that invoked the call. Since step 2
is the last step of this command, the completed variable is
set, prompting the OS synchronization state machine to enter
state C, step 0 in the next clock cycle.

This mechanism is highly flexible and largely transparent to
the thread developer. It does, however, require some additional
VHDL code to check for the completed variable.

B. OS Call Relaying

OS services that are not provided by the OSIF directly
(such as memory or FIFO accesses) are relayed to the OS
kernel running on the CPU. Once the command decoder
receives such a request from the hardware thread, it places
the command and associated arguments in software-accessible
registers on the DCR bus, and raises an interrupt with the
CPU. This interrupt is forwarded to the software delegate

In Proceedings of the 8th International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA), Las Vegas, July 2008



thread associated with the hardware thread, which retrieves
the command and arguments from the registers and executes
the software OS call on behalf of the hardware thread. Any
return values are placed in the OSIF’s DCR registers, which
pass the values on to the hardware thread.

This mechanism provides maximum flexibility, since vir-
tually every call that is possible from a software thread can
now be requested by a hardware thread as well. However, it
should only be used for relatively infrequent synchronization
calls, since there is considerable overhead involved. On every
relayed OS call, the CPU needs to process an interrupt, switch
to the associated delegate’s context, and access the DCR
bus registers before actually executing the call. During this
time, the hardware thread’s OS synchronization state machine
remains suspended. However, it must be noted that the parallel
user processes inside the thread may continue their execution.

C. Data Communication Routing

Due to the substantial overhead involved in relaying OS
requests to software, all high-throughput data communications
should be handled in hardware without involving the CPU. In
the ReconOS OS interface, this is realized in two variants,
which provide the basis for any efficient, high-bandwidth
thread-to-thread communication:

1) Bus master access: By utilizing the OSIF’s PLB in-
terface, a hardware thread has direct access to any memory
location and bus-connected peripheral in the system. Using
the bus master controller (see Figure 3), it is even possible
to transfer bursts of data to and from memory. To request
a burst write, the hardware thread must first store the data
to transfer in the thread-local burst RAM. Then, the thread’s
OS synchronization state machine calls a write_burst()
procedure. This prompts the bus master controller to initiate a
PLB bus transfer from the local burst RAM (which is mapped
into the system’s memory space) to the target address in
main memory. Similarly, a thread can request a burst read
transaction, which will place data from main memory in the
local burst RAM.

When transferring data between hardware and software
threads through shared memory, it is up to the designer to
take care of cache coherency. ReconOS provides cache control
functions to help handle these issues.

2) Hardware FIFOs: The bus access facilities provided by
the OSIF permit the hardware thread to achieve high data
transfer rates to and from main memory. While this mechanism
represents an improvement over the indirect communication
methods provided by the OS call relay technique, their per-
formance suffers considerably when several threads (and other
peripherals or the CPU) are contending for bus access.

To allow bus-independent thread-to-thread data communica-
tion, the ReconOS run-time environment provides dedicated
FIFO buffers implemented in hardware. Two threads con-
nected by such a FIFO module can transfer data without
interrupting the CPU or increasing bus load. When a hardware
thread signals a pending read or write access to such a FIFO,
the OSIF’s command decoder passes the request to the FIFO

manager (see Figure 3), which controls the handshake lines of
the FIFO modules. In the event of a write request to a full FIFO
or a read request to an empty FIFO, the FIFO manager can
also suspend the hardware thread’s OS synchronization state
machine, thus providing blocking get()/put() operations
on FIFOs.

V. THREAD SYNCHRONIZATION AND COMMUNICATION

An application is divided into several threads, which can
potentially execute in parallel. These thread objects form the
basic structure of the multi-threaded programming model.
Communication and synchronization require a thread to in-
teract with operating system primitives by calling appropriate
OS functions. In the embedded software world most real-
time operating systems, among them eCos and variants of
Linux, support a very similar set of operating system objects
for the synchronization and communication of independently
executing components of an application. It is one of the
major goals of the ReconOS project to extend this established
programming model to the hardware domain and thus form
a common abstraction layer for all processes executing in a
hybrid hardware/software system.

In a single processor system, communication and synchro-
nization services rely on the well-known hardware/software
interface provided by instruction-set programmable proces-
sors. In contrast, establishing such services in a reconfigurable
computer featuring true coarse-grained parallelism through
multithreading poses a much greater challenge. Depending
on the actual hardware/software mapping, different implemen-
tations of OS services might be favored. While ReconOS
consequently provides the same semantics for OS services,
the designer has to be aware of the fact that the performance
will vary with the chosen hardware/software mapping. Overall,
we have implemented the following OS services for synchro-
nization and communication:

A. Semaphores and Mutexes

If two or more threads share or access the same resource,
it is necessary to synchronize their execution. Usually, this is
done by semaphore or mutex (mutual exclusion) primitives.
ReconOS provides both primitives as software implementa-
tions, which can be accessed by both software and hard-
ware threads. As such synchronizations usually happen quite
infrequently, the overhead involved with calling OS kernel
functions from hardware threads is considered acceptable.

B. Shared Memory

Both software and hardware threads have direct access to the
system’s main memory: the CPU can use its PLB interface to
initiate memory transfers, while the OSIF provides hardware
threads with single-word or burst access to the PLB and,
thus, to main memory. After exchanging access information,
such as a pointer to a defined memory area, threads can use
main memory to transfer data quite efficiently. In contrast to
the synchronization primitives outlined above, memory access
from hardware threads is a bus master operation and does

In Proceedings of the 8th International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA), Las Vegas, July 2008



not interrupt the CPU. To avoid data corruption through non-
atomic operations, however, access to shared memory regions
must be protected by mutexes or semaphores. Again, this
kind of synchronization occurs infrequently enough so that
the processing overhead remains tolerable.

C. Message Queues

For stream-processing applications which often line up
several threads in a processing chain, it is desirable to be
able to efficiently pass data from one thread to the next.
To that end, the ReconOS programming model provides an
OS mailbox primitive which can be used to send data to
a logical buffer, the mailbox, from where it can be read
by another thread. The ReconOS mailbox functions as a
message queue with FIFO semantics, the corresponding calls
for writing and reading may also block if the buffer is full
or empty, respectively. Thus, the mailbox primitive provides
communication and synchronization services at the same time.

Normally, the memory block that implements a mailbox
object is located in main memory. This mapping can be used
perfectly to establish mailboxes between any software and
hardware threads in ReconOS. Driven by the great importance
of efficient data exchange for streaming applications, we have
further implemented direct FIFO objects between hardware
threads (see Section IV-C2). Consider the situation where a
hardware thread A generates data and forwards it to hardware
thread B using a mailbox. In this case, the use of a hardware
FIFO to transfer data neither requires to interrupt the CPU nor
does it increase the load on the memory bus.

We have extended the ReconOS OS interface to transpar-
ently support such direct thread-to-thread FIFO communica-
tions with the existing programming model. When using the
OS mailbox primitives, the individual hardware threads do not
need to know whether the mailbox is implemented in hardware
or software. To achieve this, every OSIF keeps track of which
mailboxes are mapped to the connected FIFOs. If a thread
invokes an OS call accessing such a mailbox, the OSIF directly
routes that access to the FIFOs via its FIFO manager, which
handles the handshaking and also blocks the reading or writing
thread, if necessary. If the accessed mailbox is not mapped to
a local FIFO, the call is forwarded as usual to the CPU.

VI. EXPERIMENTAL RESULTS

To show the feasibility and quantify the efficiency of the
proposed synchronization and communication mechanisms,
we have conducted measurements on a prototype implementa-
tion. Figure 5 displays the system architecture of the prototype
which has been implemented on a Xilinx XC2VP30 FPGA,
with the PPC CPU running at 300 MHz and the bus, hardware
threads, and FIFOs running at 100 MHz. A single OS interface
requires 1147 slices. An estimated 65 % of these are taken
up by the PLB bus interface alone; the largest parts of the
remaining logic are used for the command decoder (21 %),
DCR bus interface (6 %) and FIFO manager (3 %). Two sets
of measurements are described - one reporting the execution
times of operating system calls involving synchronization

OS 
interface

hw 
thread

system buses (PLB/DCR)

other 
peripherals

memory 
controller DRAM

OS 
interface

hw 
thread

CPU

FIFO

Fig. 5. Hardware architecture with thread-to-thread FIFOs

TABLE II
MEASUREMENTS (SYNCHRONIZATION PRIMITIVES)

with data cache without data cache
Configuration semaphore mutex semaphore mutex
SW → SW 3.39 4.53 29.05 43.99
SW → HW 4.71 6.29 30.49 47.43
HW → SW 10.74 14.49 82.90 100.23
HW → HW 11.90 14.60 83.13 101.49
All values are given in µs

primitives serviced in software, the other determining the at-
tainable communication time and bandwidth of the hardware-
implemented communication primitives, using both shared
memory and mailbox operations.

A. Synchronization Primitives

In the first experiment, synchronization operations are per-
formed between two threads, using either semaphores or mu-
texes, with one thread waiting for a synchronization primitive
and the other releasing (in case of a mutex) or posting (in
case of a semaphore) it. For both tests, all four configurations
of possible execution contexts (hardware/software) have been
measured. The results can be seen in Table II.

Since all synchronization operations in ReconOS use eCos
kernel functions implemented in software, the pure software-
based tests show the lowest synchronization latencies, with
operations initiated from hardware threads showing around
three times higher execution times, due to the necessary
interrupt processing. However, since designers are likely to use
hardware threads for data-dominated processing tasks, leaving
control-intensive operations to software threads, the higher
latencies have little impact on overall application execution
times.

B. Communication Primitives

In this experiment, two threads perform a sequence of 8
kByte data transfers, subsequently reading and writing data
from and to main memory, as well as reading and writing
data from and to a mailbox. Several configurations of the
test have been run, using hardware and software threads, and
with mailboxes mapped either to hardware FIFOs or to eCos
software mailboxes.

During this experiment, the following periods of time are
measured: the times for reading and writing the data from and

In Proceedings of the 8th International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA), Las Vegas, July 2008



TABLE III
MEASUREMENTS (COMMUNICATION PRIMITIVES)

with data cache without data cache
Operation µs MB/s µs MB/s
MEM→HW (burst read) 45.74 170.80 46.41 168.34
HW→MEM (burst write) 40.54 192.71 40.55 192.66
MEM→SW→MEM (memcopy) 132.51 58.96 625.00 12.50
HW→HW (mbox read) 61.42 127.20 61.42 127.20
HW→HW (mbox write) 61.45 127.14 61.45 127.14
SW→HW (mbox read) 58500 0.13 374000 0.02
HW→SW (mbox write) 58510 0.13 374000 0.02
All operations were run for 8 kBytes of data

to main memory, and the times for writing and reading the
data to and from the mailboxes. Since software threads do
not possess local memory apart from the processor’s registers,
the memory read/write tests for software threads has been
combined into a single memcopy test. The results are shown
in Table III.

While the hardware FIFOs only achieve 66% to 74% of the
PLB in terms of raw throughput, one has to keep in mind
that in order to transfer data from one thread to another,
two memory transactions have to occur: first, the sending
thread needs to write to shared memory, before the receiving
thread can read the data. When using hardware FIFOs, reading
and writing can occur concurrently. Considering this, an 8
kBytes data transfer via hardware FIFOs is about 40% faster
than a transfer of the same size via shared memory. Also,
the transfer via mailboxes is implicitly synchronized, while
two threads exchanging data via shared memory need explicit
synchronization, e.g., via mutexes or semaphores.

The above figures show that for applications able to chain
several hardware threads together for data processing, the
hardware FIFOs provide improved performance and reduced
bus load over shared memory. Further, hardware FIFOs fully
maintain transparency and flexibility using the ReconOS pro-
gramming model abstractions. It should however be noted that
for mailbox-based data transfers across the hardware/software
boundary we currently use regular eCos software mailboxes.
For this purpose shared memory should be preferred as it still
yields several orders of magnitude better performance. Section
VII proposes a modification to the hardware FIFOs that will
alleviate this problem.

VII. CONCLUSION AND FUTURE WORK

In this paper we have shown efficient mechanisms for
communication and synchronization in multithreaded recon-
figurable systems on two levels. First, we have detailed the
hardware/software interface allowing hardware circuits access
the same OS services as software threads, as implemented in
the ReconOS system. Second, we have shown how our pro-
gramming model allows multiple threads to synchronize and
communicate transparently on a high abstraction level, regard-
less of their respective execution contexts (hardware/software).
We have implemented a fully functional prototype and demon-
strated the feasibility of our interfaces and programming model
with experimental measurements.

Ongoing work focuses on alleviating or removing some of
the limitations that still exist in the current implementation

of the hardware communication primitives. Extending the
existing hardware FIFO IP cores with a bus interface will allow
hardware threads without direct connection to the hardware
FIFO to communicate across the bus without having to resort
to expensive software OS calls. Further, software threads can
talk directly to the FIFOs, providing a fast mechanism for
hardware/software communication.

ACKNOWLEDGMENT

This work was supported by the German Research Founda-
tion under project number PL 471/2-1.

REFERENCES

[1] E. Lübbers and M. Platzner, “ReconOS: An RTOS Supporting Hard-and
Software Threads,” in Proceedings of the International Conference on
Field Programmable Logic and Applications (FPL). IEEE, 2007, pp.
441–446.

[2] G. J. Brebner, “A Virtual Hardware Operating System for the Xilinx
XC6200,” in Proceedings of the 6th International Workshop on Field-
Programmable Logic and Applications (FPL). London, UK: Springer-
Verlag, 1996, pp. 327–336.

[3] K. Danne, R. Muehlenbernd, and M. Platzner, “Executing Hardware
Tasks on Dynamically Reconfigurable Devices under Real-time Con-
ditions,” in Proceedings of the 16th International Conference on Field
Programmable Logic and Applications (FPL), 2006, pp. 541–546.

[4] H. Hinkelmann, A. Gunberg, P. Zipf, L. S. Indrusiak, and M. Glesner,
“Multitasking Support for Dynamically Reconfigurable Systems,” in
Proceedings of the 16th International Conference on Field Pro-
grammable Logic and Applications (FPL), August 2006, pp. 219–224.

[5] H. Walder and M. Platzner, “Reconfigurable Hardware Operating Sys-
tems: From Design Concepts to Realizations,” in Proceedings of the 3rd
International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA). CSREA Press, June 2003, pp. 284–287.

[6] K. Kosciuszkiewicz, F. Morgan, and K. Kepa, “Run-Time Management
of Reconfigurable Hardware Tasks Using Embedded Linux,” in Proceed-
ings of the International Conference on Field-Programmable Technology
(ICFPT). IEEE, 2007, pp. 209–215.

[7] N. W. Bergmann, J. A. Williams, J. Han, and Y. Chen, “A Process
Model for Hardware Modules in Reconfigurable System-on-Chip,” in
Proceedings of the Dynamically Reconfigurable Systems Workshop, 19th
International Conference on Architecture of Computing Systems, vol. 81,
March 2006, pp. 205–214.

[8] J. A. Williams, N. W. Bergmann, and X. Xie, “FIFO Communication
Models in Operating Systems for Reconfigurable Computing,” in Pro-
ceedings of the 13th IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2005, pp. 277–278.

[9] H. K.-H. So and R. W. Brodersen, “Improving Usability of FPGA-based
Reconfigurable Computers through Operating System Support,” in Pro-
ceedings of the 16th International Conference on Field Programmable
Logic and Applications. IEEE, 2006, pp. 349–354.

[10] H. K.-H. So, A. Tkachenko, and R. Brodersen, “A Unified Hard-
ware/software Runtime Environment for FPGA-based Reconfigurable
Computers using BORPH,” in Proceedings of the 4th International
Conference on Hardware/software Codesign and System Synthesis
(CODES+ISSS). ACM Press, 2006, pp. 259–264.

[11] W. Peck, E. Anderson, J. Agron, J. Stevens, F. Baijot, and D. Andrews,
“hthreads: A Computational Model for Reconfigurable Devices,” in Pro-
ceedings of the 16th International Conference on Field Programmable
Logic and Applications (FPL), vol. 1. IEEE, August 2006, pp. 885–888.

[12] J. Agron, W. Peck, E. Anderson, D. Andrews, E. Komp, R. Sass,
F. Baijot, and J. Stevens, “Run-Time Services for Hybrid CPU/FPGA
Systems on Chip,” in Proceedings of the 27th International Real-Time
Systems Symposium (RTSS). IEEE, 2006, pp. 3–12.

[13] E. Anderson, W. Peck, J. Stevens, J. Agron, F. Baijot, S. Warn,
and D. Andrews, “Supporting High Level Language Semantics within
Hardware Resident Threads,” in Proceedings of the 17th International
Conference on Field Programmable Logic and Applications (FPL),
vol. 1. IEEE, August 2007, pp. 98–103.

[14] “eCos,” Website, 2008, http://ecos.sourceware.org/.

In Proceedings of the 8th International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA), Las Vegas, July 2008


