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ABSTRACT

Modern platform FPGAs integrate fine-grained reconfigur-
able logic with processor cores and allow the creation of
complete configurable systems-on-chip. However, design
methodologies have not kept up with the rise in complex-
ity of the target hardware. In particular, there is little over-
lap between the programming model for embedded software
running on a real-time operating system and the program-
ming model for digital logic.

In this paper, we present the operating system ReconOS
which supports both software and hardware threads with
a single unified programming model. ReconOS is based
on eCos, a widely-used real-time operating system (RTOS).
We investigate the incurred time and area overheads, espe-
cially for inter-thread communication across the hardware/-
software boundary, and present a case study demonstrating
the feasibility of the RTOS-centric design approach.

1. INTRODUCTION

The increase in density and complexity of reconfigurable
logic, as well as the inclusion of microprocessor cores on
FPGAs, has moved reconfigurable devices from their classic
roles as glue logic modules, prototyping platforms and ASIC
replacement to a viable platform for integrating complete
embedded systems-on-chip. Modern platform FPGAs allow
both complex control-dominated tasks and data-centric par-
allel processing tasks to be efficiently implemented on the
same device. However, design methodologies for such con-
figurable systems on chip have not kept up with the rise in
complexity of the target hardware. In particular, there is lit-
tle overlap between the programming model for embedded
software running on a real-time operating system (RTOS)
and the programming model for digital logic.

Most of today’s RTOS, e.g., VxWorks [1], RTXC [2],
eCos [3], provide the system designer with a set of clearly
defined objects and associated services, which are encap-
sulated in language-specific application programmer inter-
faces, e.g. POSIX [4]. A few basic primitives, among them
threads, semaphores and shared memory, make up the pro-
gramming model for embedded software development – it
may be considered a crude model, none the less is it a well-

established one. To support real-time systems, RTOS typ-
ically offer dynamic priority-based preemptive scheduling
for threads, minimized interrupt latencies, bounded execu-
tion times for system calls, and are highly configurable to
satisfy small memory footprint requirements.

It seems natural to extend the RTOS approach to in-
clude customized hardware cores. Analogous to software
threads, a hardware core performing a specific task can be
thought of as a hardware thread. Covering hardware and
software threads with the same programming model requires
us to give hardware cores access to RTOS services such as
semaphore management or shared memory. We need to in-
vestigate to what extent the known RTOS primitives can be
applied to (re)configurable hardware, and where they need
to be modified or replaced.

To facilitate the design of embedded systems that inte-
grate microprocessors with fine-granular configurable logic,
we have been developing ReconOS, an operating system
build on top of eCos [3], a widely-used open source RTOS.
In ReconOS, software and hardware threads integrate and
communicate seamlessly and transparently with the operat-
ing system using the same set of operating system services.
We believe that such an RTOS-centric approach to integrat-
ing hardware cores into a processor-based system eases ap-
plication development and thus increases productivity and
portability.

The main contribution of this paper is the presentation of
the novel hardware/software operating system ReconOS, in-
cluding the programming model for hardware threads and a
runtime system for Xilinx Virtex-II-Pro/Virtex-4FX FPGAs.

The paper is organized as follows: In Section 2, we dis-
cuss related approaches that provide operating system sup-
port for hardware cores. ReconOS is presented in Section 3,
including the programming model and the runtime system.
In Section 4, we report on operating system overheads and
present a case study. Finally, Section 5 concludes the paper
and lists future work.

2. RELATED WORK

During the last years, much research in operating systems
for reconfigurable hardware has been presented, including



conceptual work, e.g., in [5], algorithms for task and re-
source management, e.g., in [6, 7], and even sophisticated
techniques such as relocation and preemption of hardware
tasks, e.g., in [8]. In contrast to this research, we start out
with an available RTOS and seek to integrate hardware cores
into the system. In this paper, we are not concerned with dy-
namic and partial reconfiguration. However, we will take up
on the previously developed techniques in our future work.

Peck et al. [9] promote thread-level parallelism by gener-
ating sequential hardware threads directly from multithread-
ed C source code. They support a significant subset of the
language, along with several POSIX-like operating system
(OS) calls related to thread creation and communication.
Their hthreads project also maps some OS functionality to
hardware, resulting in shorter interrupt latencies, a reduced
number of CPU context switches, and less jitter [10]. With
ReconOS, we follow a slightly different approach. Our hard-
ware threads are not generated from a sequential language,
but written in VHDL. In this way, we exploit both thread-
level parallelism by allowing multiple hardware threads to
run concurrently, as well as low-level parallelism which is
key to constructing high-performance hardware cores. Only
the part of a hardware thread that controls the OS interaction
needs to be specified sequentially.

Modern embedded applications often require standard-
ized interfaces for existing or legacy software and support
for commodity hard- and software, such as networking pro-
tocols. Bergmann et. al [11] implemented a Linux-based OS
for reconfigurable hardware, running on a MicroBlaze soft
core CPU. They wrap hardware circuits in software wrap-
pers, called ghost processes, so that an unmodified Linux
Kernel can interact with them. As a result, hardware circuits
are modeled as processes, with their own address space. The
preferred method of communication between the CPU and
a hardware process relies on the MicroBlaze’s Fast Simplex
Links and maps them to Linux FIFOs on the file system level
[12]. Another Linux-based run-time environment for recon-
figurable hardware, called BORPH, has been developed by
So et al. [13][14]. BORPH modifies and extends a standard
Linux kernel for the PowerPC architecture with a hardware
interface, providing conventional UNIX IPC mechanisms to
the hardware using a message passing network. Their cur-
rent research focuses on file system-based data communica-
tion between software and hardware processes. In contrast
to the Linux-based approaches, ReconOS builds on top of
and extends eCos, a widely-used real-time OS. In ReconOS,
all threads share the same physical memory space. There-
fore, hardware threads have direct access to any location in
the system’s memory, or memory mapped peripherals, if de-
sired. As our research into the semantics of programming
model primitives progresses, we will also modify the inter-
nals of the eCos kernel. This is greatly facilitated by the
modular configurability of eCos.

3. RECONOS

In this section we present the concepts of our programming
model for hardware/software systems and the implementa-
tion of a runtime system on Xilinx Virtex-II-Pro and Virtex-
4 FPGAs. We pursued the following three design goals:
First, hardware threads should have access to all relevant
operating system services offered by eCos in a transparent
way. For example, communicating threads need not know
whether their communication partners are executed as hard-
ware or software threads. Second, the model should support
true parallel execution, i.e., the concurrent execution of one
software thread on the CPU and several hardware threads
mapped to reconfigurable logic. Third, we wanted to of-
fer a way to integrate existing hardware IP cores as hard-
ware threads into our system. Thus, it should be possible
not only to re-use existing software by leveraging standard
APIs supported by eCos, but also existing hardware IP by
supplementing it with a proper operating system interface.

3.1. Programming Hardware Threads

Software threads have sequential execution semantics. To
use an operating system service, a software thread simply
calls the corresponding function in the operating system li-
brary. Hardware tasks, on the other hand, are inherently par-
allel. Mostly, there is no single control flow and, thus, no
apparent notion of calling an operating system function. In
particular, typical hardware description languages, such as
VHDL, offer no built-in mechanism to implement blocking
calls.

To present as unified a programming model as possible
to the user, we rely on the following approach: We structure
a hardware thread such that all interactions with the oper-
ating system are managed by a single sequential state ma-
chine. To this end, we have developed an operating system
function library for VHDL. This library contains code im-
plementing the system call signaling wrapped into VHDL
procedures, e.g., reconos sem wait(). Together with the op-
erating system interface (OSIF), a separate synchronizing
logic module serving as the connection between the hard-
ware thread and the OS, these procedures are able to estab-
lish the semantics of blocking calls in VHDL. A hardware
thread thus consists of at least two VHDL processes: the
synchronization state machine and the actual user logic. The
state transitions in the synchronization state machine are al-
ways dependent on control signals from the OSIF; only af-
ter a previous operating system call “returns”, the next state
can be reached. Thus, the communication with the oper-
ating system is purely sequential, while the processing of
the hardware thread itself can be highly parallel. It is up to
the programmer to decompose a hardware thread into a col-
lection of user logic modules and one synchronization state
machine. Besides the increased complexity due to the par-
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Fig. 1. Example of an OS synchronization state machine

allel nature of hardware, this process is no different from
programming a software thread.

An example demonstrating this mechanism is illustrated
in Figure 1. In this example, the hardware thread waits on
a semaphore (C SEM A), reads a block of data from shared
memory into a local RAM, processes it, writes the result
back to shared memory, and then posts another semaphore
(C SEM B). The OS synchronization state machine and the
user logic communicate via the two handshake signals run
and done. Listing 1 shows the corresponding VHDL imple-
mentation of the synchronization state machine, using Re-
conOS system calls.

To further exemplify the underlying mechanism, con-
sider the following sequence of events. Upon reaching the
state IDLE, the VHDL procedure reconos sem wait() asserts
the appropriate handshake signals in the OSIF to signal a
ReconOS “semaphore wait” call. The state signal is set si-
multaneously to the next state, READ. However, the OSIF
immediately asserts a blocking signal, indicating that the
request is being processed. On the next rising clock edge,
the blocking signal, evaluated in reconos ready(), prevents
the synchronization state machine from entering the READ
state. Only after the operating system call returns, the OSIF
will deassert the blocking signal which allows the synchro-
nization state machine to complete the state transition.

Listing 1. Code for the example of Figure 1
1 o s i f f s m : process ( c lk , rese t )
2 begin
3 i f ( rese t = ’ 1 ’ ) then
4 s ta te <= IDLE ;

5 run <= ’ 0 ’ ;
6 reconos reset ( o o s i f , i o s i f ) ;
7 e l s i f r i s i ng edge ( c l k ) then
8 reconos begin ( o o s i f , i o s i f ) ;
9 i f reconos ready ( i o s i f ) then

10 case s ta te is
11 when IDLE =>
12 reconos sem wait ( o o s i f , i o s i f , C SEM A ) ;
13 s ta te <= READ;
14
15 when READ =>
16 reconos shm read burst ( o o s i f , i o s i f ,
17 l oca l address ,
18 g loba l address ) ;
19 s ta te <= RUN;
20
21 when RUN =>
22 run <= ’ 1 ’ ;
23 i f done = ’1 ’ then
24 run <= ’ 0 ’ ;
25 s ta te <= WRITE;
26 end i f ;
27
28 when WRITE =>
29 reconos shm wr i te burs t ( o o s i f , i o s i f ,
30 l oca l address ,
31 g loba l address ) ;
32 s ta te <= POST;
33
34 when POST =>
35 reconos sem post ( o o s i f , i o s i f , C SEM B ) ;
36 s ta te <= IDLE ;
37
38 when others => nul l ;
39 end case ;
40 end i f ;
41 end i f ;
42 end process ;

It should be noted that the local RAM is optional; single-
word bus access is possible through the OS interface.

3.2. System Architecture and Runtime System

We have implemented a runtime system that can execute
both software and hardware threads concurrently on Virtex-
II Pro or Virtex-4FX FPGAs. Figure 2 shows the overall sys-
tem architecture. Hardware threads are placed in the recon-
figurable fabric; software threads together with the RTOS
kernel are executed on the devices’ embedded PowerPC 405
CPU. The system is based on an IBM CoreConnect bus
topology, which connects the CPU to system peripherals,
such as memory controllers, timers and I/O, and the OS in-
terfaces associated with the hardware threads. Design, syn-
thesis and simulation of the hardware is done with the Xil-
inx Embedded Development Kit and supplementary custom-
built tools for thread instantiation and integration, as well as
a hardware thread simulation environment.

eCos, which is used as the underlying software RTOS,
is configurable on an extremely fine-grained level. The de-
signer selects the modules required for a particular appli-
cation (e.g., a bitmap scheduler, POSIX API support, de-
vice drivers, a TCP/IP stack, and the ReconOS hardware
interface support), configures them for the particular target
platform, and builds a customized static library. Software
threads are then written in C or C++, using the eCos or an-
other supported standard API for operating system calls. To-
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Fig. 2. ReconOS system architecture

gether with initialization code for system startup and thread
creation, the threads are compiled and linked against the cus-
tomized eCos library, resulting in a single executable image
to be loaded into system memory.

Hardware threads are written in VHDL, using the OS
call mechanisms described in Section 3.1, and connect to the
OS interface as shown in Figure 1. This OS interface con-
tains the busy/blocking handshaking logic and implements
both master and slave interfaces to the system bus, provid-
ing a hardware thread with access to any memory region
or memory mapped peripheral in the system. Thus, hard-
ware threads that access shared memory do not generate any
CPU load. Calling an operating system function, however,
requires the execution of the eCos kernel. To this end, each
OS interface module can raise a hardware interrupt. The OS
interfaces and the interrupt controller module are instanti-
ated automatically by our build system.

At run-time, hardware threads are created similar to reg-
ular software threads. For each hardware thread, a new ded-
icated eCos thread, the delegate, is created and connected to
the corresponding OS interface. Whenever an OSIF raises
an interrupt, the corresponding delegate is scheduled for ex-
ecution. The delegate thread receives the interaction re-
quests from the OS interface, translates them into their eCos
equivalents, and executes them on behalf of the hardware
thread. In our current ReconOS implementation, all hard-
ware threads are statically configured into the FPGA and can
run in parallel. While there is no need to schedule hardware
threads, the priority of a hardware thread is set by assign-
ing a priority to the associated delegate thread and its OSIF
interrupt line.

An example sequence for a semaphore wait OS call is
shown in Figure 3. The hardware task requests the service
by executing the corresponding VHDL procedure, i.e., re-
conos sem wait(), which blocks the hardware thread’s OS
synchronization state machine. The OS interface then raises
an interrupt, which is forwarded to the CPU by the sys-
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tem’s interrupt controller. There, a corresponding interrupt
handler wakes up the associated software delegate thread,
which queries the OS interface across the system bus as to
which OS call was requested. If the call in question is non-
blocking, the OS interface deasserts the blocking line, allow-
ing the hardware thread to continue. Otherwise, blocking
continues until the request is served. Again, blocking affects
only the OS synchronization state machine – in principle,
parts of the user logic in the hardware thread may run contin-
uously. The OS call is then executed by the delegate thread
using the standard eCos API, e.g., cyg semaphore wait().
After that call returns, the OS interface is notified, deasserts
the blocking signal and thus allows the hardware thread to
continue execution. This execution model provides a great
deal of flexibility and basically enables a hardware task to
use any operating system primitive accessible by software,
albeit at the cost of the OS’ interrupt handling latency and
an additional context switch to the delegate thread.

4. CASE STUDY AND EXPERIMENTAL RESULTS

The efficiency of an application running on an embedded
real-time operating system hinges on the efficiency of the
OS services’ implementations, especially when running ap-
plications with significant inter-thread communication and
synchronization. We have performed intensive tests with
synthetic hardware and software threads performing system
calls. In particular, we have analyzed the average laten-
cies of synchronization operations between several combi-
nations of software and hardware threads using semaphores.
The tests have been conducted on a Xilinx XUPV2P board
equipped with an XC2VP30-7 FPGA. The embedded CPU
has been run at 300 MHz, while the system bus, memories,
peripherals and hardware threads have been run at 100 MHz.
The area overhead introduced by the operating system is
mainly given by the OS interfaces attached to the system
bus. In our implementation, an OS interface including the
system bus interfaces amounts to 1051 slices, which consti-
tutes about 7 % of the used FPGA.



Table 1. Average latencies of semaphore operations
test data cache enabled data cache disabled

semaphores (turnaround)
SW-to-SW 7.69 µs 78.92 µs
SW-to-HW 13.84 µs 93.91 µs
HW-to-SW 27.13 µs 168.16 µs
HW-to-HW 34.19 µs 211.96 µs

non-blocking OS call (semaphore post)
SW 1.59 µs 14.51 µs
HW 16.51 µs 161.09 µs

The results are listed in Table 1. The first set of measure-
ments shows the semaphore turnaround time, the time taken
between one thread posting a semaphore and another thread
returning from a wait on that semaphore. Since all oper-
ating system calls are handled by software, it is expected
that calls from hardware threads exhibit latencies inferior to
the same calls issued from software. A software-to-software
semaphore synchronization involves only one CPU context
switch from the posting to the waiting thread. If the waiting
thread is running in hardware, it has to be notified across the
system bus, which takes additional time. As described in
Section 3.2, any OS call from hardware involves calling an
interrupt handler and an additional CPU context switch, as
well as extra bus access to the OS interface’s registers. This
is confirmed by the second set of measurements shown in
Table 1, listing the latencies of non-blocking OS calls such
as a semaphore post. It is further interesting to note that dis-
abling the CPUs data cache incurs a severe penalty on both
software and hardware threads.

While ReconOS offers a simple and flexible way of pro-
viding operating system services to hardware threads, the
experiments demonstrate clearly that there is a penalty in-
volved. Nevertheless, designers are more likely to use the
precious logic resources for heavy data-parallel processing
rather than implementing synchronization-intensive control
dominated code. Under this premise the synchronization la-
tencies are within reasonable bounds. To minimize synchro-
nization latencies for hardware threads, one could either im-
plement the delegate’s functionality directly into the eCos
kernel and save one context switch, or map the semaphore
management together with the scheduler into hardware. The
first option requires a modification of the eCos kernel; the
latter leads to a massive reorganization and hardware/soft-
ware partitioning of the kernel which is pursued in [10].

Next, we present a more elaborate case study to show the
feasibility of system design based on an operating system
for hardware/software threads. Grayscale image data is ac-
quired from a webcam and streamed into the embedded tar-
get system through Ethernet, using a TCP/IP stack running
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Table 2. Raw execution times and theoretical speedup
raw execution time [ms/frame]

w filter
capt. filter disp. total

S

SW 23.9 62.3
3

HW
16.0

6.0
22.5

44.4
1.4

SW 86.8 125.3
5

HW
16.0

7.6
22.5

46.1
2.7

on eCos. The image data is then run through a convolution
filter (in this case, a w×w Laplacian edge detection kernel),
and subsequently copied to a framebuffer for display on an
external monitor. The application consists of three threads,
a capture, a filter and a display thread, as depicted in Figure
4. Data is passed between the threads through shared mem-
ory, while semaphores synchronize access to the memory
and enforce a sequential scheduling of the threads.

The application was first implemented and tested purely
in software. Then, we have coded the Laplacian in VHDL
and turned it into a hardware thread. Convolution filters are
amenable to parallelization which promises a considerable
performance boost if the filter thread is moved to hardware.
Again, the CPU has been operated at 300 MHz and the rest
of the system at 100 MHz.

Table 2 lists the execution times in ms per frame for the
different threads and Laplacian kernel sizes, excluding any
overhead due to OS calls. It can be seen that the hardware
filter thread outperforms its software counterpart by a factor
of 3.98 and 11.42 for a 3 × 3 and 5 × 5 kernel, respec-
tively. The last column of Table 2 presents the theoretically
attainable speedup S. To process a frame, all three threads
need to execute in sequence. Hence, the theoretical speedup
is fundamentally limited by Amdahl’s law. In practice, the
theoretical speedup will not be reached due to the overhead
of the OS.



Table 3. System performance in [frames/s]
block size

w filter 4 8 20 40 80

SW 14.4 15.5 16.1 16.2 16.3
3

HW 15.5 17.6 18.6 19.0 18.9
Speedup 1.08 1.14 1.16 1.17 1.16

SW 8.1 8.3 8.5 8.5 8.5
5

HW 15.3 17.0 18.4 18.6 18.6
Speedup 1.89 2.05 2.16 2.19 2.19

The application was run with differently sized blocks of
data. Larger block sizes reduce the system call overhead for
semaphore synchronization, but require more shared mem-
ory. Table 3 lists the resulting performance figures in frames
per second for different Laplacian kernel sizes and for soft-
ware and hardware filter threads. The data shows that in-
creasing the block size to more than 20 image lines does not
result in a significantly higher performance. Further, we ob-
serve that by switching from a 3 × 3 to a 5 × 5 Laplacian
kernel the software filter’s performance drops dramatically
while the hardware filter can exploit more parallelism and
delivers an almost constant performance. Finally, we see
that the resulting overall speedups are quite close to the the-
oretically achievable speedups of Table 2. This points to an
acceptable overhead of the ReconOS system calls.

Naturally, the performance of the application could be
further improved by allowing concurrent execution of mul-
tiple threads, using a double-buffering of data blocks, or
by implementing another thread in hardware. However, the
case study served to demonstrate that by moving data-inten-
sive threads to hardware while maintaining the underlying
programming model – and thus making changes to the re-
maining parts of the system unnecessary –, appealing per-
formance increases can be achieved.

5. CONCLUSION AND FUTURE WORK

We have presented the novel operating system ReconOS,
which supports the execution and transparent interaction of
hardware and software threads on a configurable system-on-
chip. Time and area overheads have been quantified and
the practicability of the proposed RTOS-centric design ap-
proach has been demonstrated by a case study.

Future work will be conducted along two lines: First, we
will investigate partial reconfiguration to load and execute
hardware threads dynamically. So far, all applications im-
plemented on ReconOS have used static hardware threads
placed during system synthesis. Second, we intend to op-
timize the communication between hardware threads, and
between hardware threads and the operating system objects

running on the CPU. For example, we could provide sepa-
rate communication channels for physically adjacent hard-
ware threads. This promises higher throughput and shorter
latency together with a reduction of the load on the system
bus.
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