
Reconfigurable Nodes for Future Networks
Ariane Keller

and Bernhard Plattner
ETH Zurich, Switzerland

Email: ariane.keller@tik.ee.ethz.ch

Enno Lübbers
EADS Innovation Works

Ottobrunn / Munich, Germany
Email: enno.luebbers@eads.net

Marco Platzner
and Christian Plessl

University of Paderborn, Germany
Email: christian.plessl@uni-paderborn.de

Abstract—Future network architectures aim at solving the
shortcomings of the traditional, static Internet architecture.
In order to provide optimal service they have to adapt their
functionality to different networking situations. This can be
achieved by dividing the networking functionality into modular
blocks and combining them as required at runtime. While the
feasibility and flexibility of novel network architectures have been
successfully demonstrated on software-based prototypes, they are
often unable to provide sufficient performance due to the lack of
hardware acceleration.

We present a networking node architecture for future Internet
applications that provides a reconfigurable hardware/software
platform in which the modules of the node’s network stack can
be flexibly distributed at runtime across hardware and software.
By utilizing novel reconfiguration-aware communication mecha-
nisms for functional blocks both within and across the hardware
and software domains, our flexible node architecture enables
dedicated hardware acceleration for adaptive networking.

I. INTRODUCTION

While the current Internet architecture has proven to be
a successful foundation for data networks with a relatively
slow-changing topology and known functionality, it frequently
falls short of expectations when applied to emerging network
applications. With the introduction of novel computing nodes
(such as sensor nets), communication types (such as mobile
communication, or communication in social networks) and
security concerns (DDOS attacks, attacks against the domain
name system), the Internet architecture is reaching its lim-
its [1], [2]. Its well defined, static protocol stack is too rigid
as that it could effectively adapt to those new situations.

As an alternative to the Internet architecture, several novel,
clean slate network architectures have been proposed for
the future Internet. An overview is provided by [3]. These
architectures break up the static nature of the Internet and
offer more flexibility, have built in security features, and/or
support a variety of different protocol stacks. Figure 1(a)
shows the Internet architecture where the protocol layering is
static and well defined whereas Figure 1(b) depicts a modular
architecture in which the used modules are chosen based on
the current requirements. In addition to legacy networking
functionality support, it is also possible to include functions
in the networking architecture that were previously attributed
to the application layer, such as encryption or compression.

The flexibility of modular and adaptive network architec-
tures however comes at a cost. Where the well-defined TCP/IP
architecture can benefit from high-volume high-performance

Network

Mac

Phy

Application

Transport

(a) Internet architec-
ture

Phy/Mac

Application

(b) Adaptive
network architecture

Figure 1. Comparison of the Internet protocol stack and an adaptive network
architecture.

ASIC hardware implementation, a flexible networking en-
vironment is somewhat of a moving target for hardware
acceleration. For most proposed future network architectures
an ASIC implementation is infeasible, since all functions
need to be known precisely at design time but the novel
network architectures adapt their functionality to the current,
run-time communication needs. Though a software imple-
mentation provides the required flexibility, it is intractable in
many situations that demand high processing performance or
performance/power ratios, such as in backbone routers, mobile
communication equipment and autonomous sensor networks.

In order to combine the processing power of an ASIC
implementation with the flexibility of a software implementa-
tion, research in networking increasingly turns towards FPGA
platforms [4], [5]. Within this class of reconfigurable devices,
hybrid CPU/FPGA platforms provide an additional measure
of flexibility: they combine a microprocessor core for soft-
ware processing with a programmable logic fabric capable
of implementing high-performance data-parallel hardware in
a reconfigurable System on Chip (rSoC). Of particular interest
for future networking architectures are FPGA families that
allow for changing the configuration of their logic cells at
run-time through partial reconfiguration1 in order to achieve
highest flexibility.

The contribution of this paper is an architecture enabling

1Partial run-time reconfiguration enables the reprogramming of a part of the
FPGA’s logic, while simultaneously another part carries on processing data.



transparent communication between functional blocks imple-
menting different networking functions, regardless whether the
blocks are implemented in hardware or software. As a net-
working architecture we build upon ANA [6], [7] and its exten-
sion towards reconfigurable hardware [8]. While in [8] we have
focused on the general concepts of adaptive networking for
embedded systems, the work presented in this paper describes
the details of the communication mechanisms across the
hardware/software boundary, as facilitated by our architecture.
By integrating a communication infrastructure that respects the
run-time reconfigurability of the targeted platforms, we strive
to maintain the performance advantage of dedicated hardware
implementations for parallelizable processing workloads while
approaching the flexibility of a software-based solution.

The remainder of this paper is structured as follows: in
section II we provide a brief history of configurable network
architectures. In section III we give an overview of ANA,
especially the node architecture. Section IV gives an overview
of ReconOS, an operating system tailored for embedded
reconfigurable devices. Section V shows how to combine ANA
with ReconOS in order to arrive at a run-time reconfigurable
adaptive networking architecture for embedded devices. Sec-
tion VI concludes the paper.

II. RELATED WORK

The composition of protocol stacks dedicated to a specific
use has been an ongoing research area for the past 15 years,
dating back to the x-kernel [9] which defines an explicit archi-
tecture for constructing and composing network protocols. In
the following years several projects were suggested, and with
the Click modular router [10] one project achieved widespread
use. In the Click project the networking functionality is
divided into small elements, each of which performs a simple
computation such as decrementing a TTL or queuing a packet.
Independent from Click, the BSD operating system offers the
possibility to create a modular networking architecture with
its Netgraph subsystem [11].

However, these projects are not targeted to a future network
environment in which the network is more heterogeneous
and should adaptively optimize its service. More recently,
many projects have been launched (e.g., within the FIND
initiative [12] in the US, the FIRE initiative [13] in Europe
and the new generation network project [14] in Japan) that
target different aspects of future networks [3]. There is a
broad consensus in the community that in the future, network
functionality should be organized in flexibly composable small
building blocks. The ANA [6] project is fully in line with
this approach and provides a networking architecture in which
the available services can be adapted continuously. ANA even
allows for running completely distinct protocol stacks side-by-
side and is thus well suited for a heterogeneous and mutable
computing environment. We present an overview of ANA in
section III and use it in section V as a conceptual basis for
our architecture.

Many networking research projects that are using FPGAs
have been implemented on one of two platforms: The FPX [15]

and the newer NetFPGA [5] platform. The NetFPGA platform
provides a Xilinx Virtex-II Pro FPGA on a board with four
1 GBit/s interfaces. For example, [16] uses the NetFPGA plat-
form in combination with partial, run-time reconfigurability to
provide an efficient network virtualization platform.

III. ANA
The concepts developed in the Autonomic Network Archi-

tecture (ANA) project [7] form the foundation of our adaptive
networking architecture. In order to provide high flexibility,
ANA divides networking functionality into functional blocks
(FB) that may be combined as required by any given situation.
The functionality of a single FB can range from a full mono-
lithic network stack down to a small entity like computing a
checksum.

In order to allow the construction of arbitrary network
stacks, ANA provides an API (application programmer in-
terface) which describes all communication between different
networking functions and is based on a publish/resolve ar-
chitecture. This API is beyond the scope of this paper—it is
described in [7]. In this paper we focus on the communication
inside a node.

The dynamic combination of FB rests upon the concept of
indirection and is realized with so-called information dispatch
points (IDPs). IDPs are somewhat similar to file descriptors
and sockets in UNIX systems. Instead of a tight binding
between networking functions, where one function directly
calls another function, the interaction is based on a message
passing system. Hence, when data needs to be processed with
a certain operation, the data is sent to an IDP that is bound to a
function implementing that operation. This layer of indirection
allows us to dynamically adapt the networking stack by
changing the bindings of IDPs to FBs. This indirection will
also prove useful for the transparent communication between
hardware and software. All the FBs, IDPs and the bindings
between them are managed in a central place called minmex
that manages them in a so-called Information Dispatch Table
(IDT). Sending a packet from one FB to another is therefore
done with the help of the minmex. Figure 2 shows the minmex
with three functional blocks. The little dots represent IDPs and
the arrows indicate that messages are always routed over the
minmex.

Information Dispatch Table
a -> FB 2, fct_1
b -> FB 3, fct_2
c -> FB 3, fct_3

minmex

a

b

c

send(c, "data")

send(a, "data")

FB 1

FB 2
fct_1{}

FB 3
fct_2{}
fct_3{}

Figure 2. Data forwarding in an ANA node.

This architecture is currently implemented on different
UNIX-like operating systems such as Linux and OS X. The



implementation is a pure software implementation without any
hardware acceleration and therefore cannot handle high data
rates. In the next chapter we introduce ReconOS, an operating
system that allows the easy integration of functions imple-
mented in hardware with functions implemented in software.

IV. RECONOS

ReconOS [17], [18] is an operating system for reconfig-
urable computing. It is implemented on an rSoC—a system
integrating a dedicated CPU with an FPGA, which can be
partially reconfigured at runtime. ReconOS extends existing
operating system kernels, such as Linux, with functions and
modules for integrating hardware and software into a single
execution environment. More generally speaking, ReconOS
extends the multithreaded programming model—already in
widespread use within software-based systems—towards re-
configurable hardware. It models hardware modules as hard-
ware threads on the same level with software threads. Hence,
hardware threads interact with other threads using the same
programming model primitives as their software counterparts.
ReconOS applications are thus typically crafted from the
following operating system objects: threads, semaphores and
mutexes, shared memory, message queues and mailboxes.

The fact that all inter-thread activity is carried out using
only these objects provides complete transparency within these
interactions; a thread does not need to know whether its
communication or synchronization partners are located in
hardware or software. This transparency greatly facilitates the
communication between functionality implemented in hard-
ware and functionality implemented in software.

CPU

bus 
arbiter

OSIF

hw thread

bus macro

reconfigurable area

system bus

memory 
controller DRAMICAP

OSIF

bus macro
en en

slot slot

hw thread

Figure 3. ReconOS system architecture.

The main part of any ReconOS system is a central micro-
processor executing the host operating system kernel. Current
implementations of ReconOS use a two-bus architecture for
control and data communication between hardware threads and
the OS kernel. Hardware threads are located within specified
regions of the reconfigurable fabric, called slots, which are
connected to the communication infrastructure through a ded-
icated hardware module, the OS interface (OSIF) (as described
in [17]). Individual hardware threads can be exchanged during
run-time through partial reconfiguration of the FPGA, which

provides a means of dynamically adapting the system’s hard-
ware/software partitioning to changing requirements.

The architecture of an example ReconOS system with two
slots is depicted in Figure 3. Besides the main CPU and
the operating system interfaces, the main bus also connects a
DRAM controller and the FPGAs internal configuration access
port (ICAP), which is used for dynamic partial reconfiguration.

ReconOS supports transparent virtual memory manage-
ment, where both software and hardware threads can use
the same pointers to access the same memory region. There-
fore, ReconOS provides an additional memory management
unit implemented in hardware that accesses the page table
of the Linux operating system and stores the translations
in a translation lookaside buffer. Page faults are processed
in software in order to use operating system functions for
memory protection and demand paging. This virtual memory
management allows hardware and software threads to easily
access a shared memory region.

V. HARDWARE/SOFTWARE CO-DESIGN FOR ANA

In this section we introduce our approach to hard-
ware/software co-design of adaptive network nodes. It relies on
ANA for the mechanisms to assemble functional blocks (FB)
into flexible protocol graphs, and on the ReconOS/Linux oper-
ating system to realize transparent and efficient communication
between FBs implemented in hardware and FBs implemented
in software.

A. FB Graph

The FB forming the networking functionality of a node
together with their interconnection can be displayed as a task
graph. Nodes represent FBs and edges represent packets sent
from one FB to another. The purpose of our architecture is
to allow the implementation of FBs in hardware, software, or
both. This gives us the flexibility to decide at runtime which
FB should be executed in hardware and which in software,
based on the packets that currently need to be processed.
Figure 4 shows the graph of the FBs of one node at two
different points in time. In Figure 4(a) FB B is implemented in
hardware and in Figure 4(b) FB B is implemented in software.
This means that FB A has to send the packets once to an FB
implemented in hardware and once to an FB implemented
in software. However, the internal operation of FB A should
not be influenced by the current hardware/software partition.
Hence, the routing of packets between functional blocks
should be transparent to the sending FB.

B. System-on-Chip Architecture

Figure 5 sketches the architectural layout of a node. In
addition to the elements provided by ReconOS, it includes
a specialized multibus for interconnecting the hardware cores.
This multibus is needed since the bandwidth of the shared
bus is limited to a maximum of close to 1.6 GBit/s as shown
in [8]. The shared bus is used for the communication between
FBs executed in software and FBs executed in hardware. For
the communication between the FBs executed in hardware the



B

F

D

CA

E

FB

FB

Hardware

Software

(a) Hardware / Software partition-
ing at time t1

F

D

CA

EB

(b) Hardware / Software partition-
ing at time t2

Figure 4. Graph representing the networking functionality of a node.
Depending on the time, different FBs are mapped to hardware and to software.

dedicated multibus is used. Each hardware thread receives data
from one bus via a FIFO-like interface. A hardware thread can
further send data to the buses assigned to other threads. For
arbitration, round robin or thread priority based schemes can
be used. Alternatively, more complex arbitration schemes with
access control based on the priority of individual packets are
conceivable.

HW FB HW FB HW FB

Minmex

Memory

SW FB SW FB SW FB

IDT

rIDT rIDT rIDT

executed on CPU

shared bus

FPGA

Figure 5. System architecture for an adaptive network node. FBs are executed
in SW (on the CPU) or HW (on the FPGA) and communicate over a shared
bus (SW↔SW, HW↔SW) or dedicated multibus links (HW↔HW).

This architecture improves the performance of a node due
to two effects. First, computationally expensive FBs (e.g.,
for encryption) can be executed faster in hardware than in
software, and, second, the processing in hardware is done in a
pipelined manner, where each FB in hardware represents one
pipeline stage.

C. Hardware / Software Interface

The interface between software and hardware FBs is imple-
mented through a combination of message passing and ring
buffers that are accessible by the minmex and the respective
hardware FB. While data is read and written to the shared
memory through burst transactions on the hardware thread’s
bus master interface, the communication partner is notified
about new data through a OS-provided message box that
specifies the number of bytes written to the ring buffer. The
message format in the ring is as follows: packet length /
IDP / data. To avoid an interrupt after every packet multiple
notification messages can be aggregated in a single message,
providing the total length of newly written bytes.

Packets sent from a software FB are forwarded to the
minmex in an identical manner to the software-only imple-
mentation. The minmex looks up whether the destination IDP
is currently mapped to a software FB or to a hardware FB. If
it is mapped to a hardware FB, the IDT stores a pointer to the
shared memory ring and the message queue used to notify the
corresponding thread.

For packets processed by a hardware FB forwarding every
packet to the minmex is inefficient, since this would interrupt
the software for every packet. To avoid this overhead, each
hardware FB maintains a partial replica of the IDT (rIDT) of
the minmex that allows it to decide how to forward a given
packet. The entries in the rIDT are updated by the minmex.
Based on the rIDT the hardware FB decides a) where to
forward a processed message (to software or to which bus
interface) and b) what to do with a packet that it received on
a given IDP. In order to provide an efficient lookup from IDPs
to actions, a CAM (content addressable memory) is used. If
the packet is sent to another hardware FB, an arbiter is asked
for sending permission on the bus corresponding to the IDP.

D. Dynamic Reconfiguration

There are two aspects that demand a reconfiguration of the
system at runtime. Either a node adapts the protocol stack,
e.g., when a new application with new requirements is started
or when new networking functionalities such as encryption or
compression are added to the already existing networking task
graph. Or the network traffic mix changes, e.g., the amount of
data that needs to be processed by a specific FB changes. An
optimal hardware/software partitioning depends on the current
traffic mix, the processing time of a packet in a given FB and
the system overhead.

Our architecture supports this dynamic assembly of FBs by
modeling them as threads in ReconOS. Exchanging hardware
threads or exchanging software threads with hardware threads
and vice versa is enabled by the partial reconfiguration capa-
bility of ReconOS. If a new FB is to be executed in hardware
and a hardware slot is available, ReconOS reconfigures this
hardware slot with the new FB, while the FBs running in
other hardware slots are not affected and can process data
continuously. As soon as the FB is correctly configured, the
minmex can initialize the FB and start dispatching data to it.

The physical size of the reconfigurable areas on the FPGA
(the slots) is determined at design time, taking into account
the actual sizes of the possibly required hardware threads.

E. Experimental Evaluation

We have implemented the individual parts of our architec-
ture on a Xilinx Virtex-II-Pro FPGA evaluation board. Both
the clock rate of the hardware logic and the clock rate of
the integrated PowerPC CPU are set to 100MHz. We have
measured the delay for sending a minimum sized packet
between two different FB that are either implemented in
hardware or in software. Table I shows this round trip time
(RTT). If both FBs are implemented in hardware, the RTT is
by far the fastest, since there is no overhead involved. The



communication between two FBs implemented in software is
faster by a factor of 3.5 to 7 compared to the communication
that crosses the hardware / software boundary. Upon accessing
the ring buffer for the first time from a hardware functional
block a page fault occurs, which has to be handled in software
by the operating system kernel. Since the delay with a page
fault is about twice the delay without a page fault, we conclude
that interrupting the CPU is the largest contributor to the RTT.

Table I
ROUND TRIP DELAY BETWEEN TWO FUNCTIONAL BLOCKS

Implementation Delay
sw→sw→sw 886µs
sw→hw→sw (with page fault) 6157µs
sw→hw→sw (without page fault) 3168µs
hw→hw→hw 0.06 µs

Note that the increased round trip delay for a hybrid
hardware/software solution does not discourage hybrid so-
lutions since it only accounts for the delay of transferring
control, but not the delay of data processing. A hardware
implementation of a functional block can still outperform
the software implementation with respect to delay by several
orders of magnitude. However, the control transfer delay limits
the granularity of functional blocks that can be successfully
mapped to hardware.

VI. CONCLUSION

With the combination of ANA and ReconOS we have
created a compute node that provides flexible and efficient
networking services designed for the future of the Internet.
Our node shows that novel network architectures can be
implemented with hardware support in order to provide higher
packet throughput—even though novel architectures might not
be amenable for an ASIC implementation.

In our architecture, a node can adapt its configuration to
the current traffic mix (e. g., the fraction of packets that
requires a specific processing) or to the available protocols.
Protocol functions can be executed either as hardware or
software threads and the mapping of functionality to hardware
or software can be adapted dynamically as needed. Transparent
communication and synchronization between all threads is
provided by ReconOS.

Ongoing work focuses on three main aspects. First, we are
working on the comprehensive integration of the different parts
of our architecture in order to improve the reusability of our
concepts within the research community. Second, we focus on
the implementation of different functional blocks to show the
benefit of a dynamic mapping of functional blocks to either
hardware or software. Third, we will develop algorithms for
dynamically choosing the hardware/software mapping of the
functional blocks at runtime. To this end we will enhance
our execution environment with several monitoring elements
to obtain run-time input such as utilization of an individual
functional block or throughput between two functional blocks.
Finally, for a performance evaluation, the architecture can be

ported to the NetFPGA platform that provides more power-
ful networking connections than the development board we
currently use.

ACKNOWLEDGMENT

This work was supported partly by the ANA project funded
by the European Union Information Society Technologies
Framework Programme 6, partly by the German Research
Foundation under project number PL 471/2-2, and partly by
the EPiCS Project funded by the European Union Seventh
Framework Programme (FP7/2007- 2013) under grant agree-
ment no 257906.

REFERENCES

[1] M. S. Blumenthal and D. D. Clark, “Rethinking the design of the
internet: the end-to-end arguments vs. the brave new world,” ACM Trans.
Internet Technol., vol. 1, no. 1, pp. 70–109, 2001.

[2] P. Molinero-Fernández, N. McKeown, and H. Zhang, “Is IP going to take
over the world (of communications)?” SIGCOMM Comput. Commun.
Rev., vol. 33, no. 1, pp. 113–118, 2003.

[3] Subharthi Paul, Jianli Pan and Raj Jain, “Architectures for the Future
Networks and the Next Generation Internet: A Survey,” 2009, http://
www.cse.wustl.edu/~jain/papers/i3survey.htm (Oct 09).

[4] “High-Speed Networking and FPGA Solutions,” http://www.invea-tech.
com/products-and-services/overview (Jun 10).

[5] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “NetFPGA–an open platform for gigabit-
rate network switching and routing,” in MSE ’07: Proceedings of
the 2007 IEEE International Conference on Microelectronic Systems
Education. Washington, DC, USA: IEEE Computer Society, 2007, pp.
160–161.

[6] “Autonomic Network Architecture - EU Project (2006-2009),” http://
www.ana-project.org (Oct 09).

[7] G. Bouabene, C. Jelger, C. Tschudin, S. Schmid, A. Keller, and
M. May, “The autonomic network architecture (ANA),” Selected Areas
in Communications, IEEE Journal on, vol. 28, no. 1, pp. 4 –14, Jan.
2010.

[8] E. Lübbers, M. Platzner, C. Plessl, A. Keller, and B. Plattner, “Towards
Adaptive Networking for Embedded Devices based on Reconfigurable
Hardware,” in International Conference on Engineering of Reconfig-
urable Systems and Algorithms (ERSA’10). Las Vegas, NV, USA:
CSREA Press, 2010, pp. 225–231.

[9] N. C. Hutchinson and L. L. Peterson, “The X-Kernel: An architecture
for implementing network protocols,” IEEE Trans. Softw. Eng., vol. 17,
no. 1, pp. 64–76, 1991.

[10] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek, “The click
modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
2000.

[11] “All About Netgraph,” http://people.freebsd.org/~julian/netgraph.html
(Aug 10).

[12] “FIND – Future Internet Design (FIND) - US National Science Foun-
dation,” at http://www.nets-find.net/, (May 09).

[13] “Future Internet Research and Experimentation (FIRE) initiative,”
http://cordis.europa.eu/fp7/ict/fire, (May 09).

[14] “NWGN – New-Generation Network R&D Project - Japan,” at
http://nwgn.nict.go.jp/index_e.html, (June 10).

[15] E. L. Horta, J. W. Lockwood, D. E. Taylor, and D. Parlour, “Dynamic
hardware plugins in an fpga with partial run-time reconfiguration,” in
DAC ’02: Proceedings of the 39th conference on Design automation.
New York, NY, USA: ACM, 2002, pp. 343–348.

[16] D. Unnikrishnan, R. Vadlamani, Y. Liao, A. Dwaraki, J. Crenne, L. Gao,
and R. Tessier, “Scalable network virtualization using FPGAs,” in
FPGA ’10: Proceedings of the 18th annual ACM/SIGDA international
symposium on Field programmable gate arrays. New York, NY, USA:
ACM, 2010, pp. 219–228.

[17] E. Lübbers and M. Platzner, “ReconOS: Multithreaded programming for
reconfigurable computers,” ACM Transactions on Embedded Computing
Systems Special Issue (CAPA), 2009.

[18] ——, “ReconOS: An RTOS supporting hard- and software threads,”
IEEE Int. Conf. on Field Programmable Logic and Applications, 2007.


