
Towards Adaptive Networking for Embedded
Devices based on Reconfigurable Hardware

Enno Lübbers, Marco Platzner
and Christian Plessl

University of Paderborn, Germany
Email: enno.luebbers@uni-paderborn.de

Ariane Keller and Bernhard Plattner
ETH Zurich, Switzerland

Email: ariane.keller@tik.ee.ethz.ch

Abstract—Research in communication networks has shown
that the Internet architecture is not sufficient for modern com-
munication areas such as the interconnection networks of super
computing centers or sensor and mobile networks. Stringent
requirements with respect to performance, cost, and power
consumption paired with an increasing demand for flexibility ask
for run-time optimization of the computing and communication
functionalities. Specifically, the ability to adapt the communi-
cation protocol stack to the current needs of the application at
run-time is a key element for optimally operating such a network
of dedicated compute nodes.

In this paper, we introduce the concept of a reconfigurable
system-on-chip infrastructure for implementing adaptive protocol
stacks. Our proposed architecture leverages research in the
areas of adaptive networks and reconfigurable computing to
provide a hardware/software platform that allows for runtime
reconfiguration of existing network protocol stacks, deployment
and removal of protocols, migration of packet processing tasks
from software to hardware and vice versa, and efficient packet
forwarding between different processing tasks.

I. INTRODUCTION

In recent years communication between computing nodes
became more and more important. Initially, the communication
infrastructure was built on commodity computers that provided
just a small amount of computing performance. With the
increase in data volume and complexity in the processing
steps the implementation of networking tasks was shifted more
and more to hardware implementations. This worked well,
since the predominant network architecture, TCP/IP, is quite
static. TCP/IP was designed for a fixed infrastructure without
resource limitations, and without changing environment and
mobility in mind. This is well reflected in the Internet hour-
glass depicted in Fig. 1(a). TCP/IP allows for flexibility in the
link layer and in the application layer, but it requires the IP
protocol to glue these layers together. The introduction of IPv6
has proven that it is difficult to change anything on the IP layer.
While the IP architecture has proven to be very successful in
the Internet, current network research focuses on softening
this strict architecture in order to allow for more specific
networking stacks and for the adaptation of those stacks at run-
time. Such stacks are useful in several environments ranging
from high-performance compute node interconnects over small
sensor node networks to mobile networks. The requirements
in these extreme environments are too diverse that a one-size-
fits-all architecture as the TCP/IP architecture would fit. For

example, small sensor network nodes that communicate only
locally would waste a lot of energy when supporting a whole
TCP/IP stack, or network nodes in a wearable computing
scenario may profit from adapting their networking protocols
depending on whether the user is at home or in an unknown,
potentially hostile, environment. A network architecture that
fits those diverse needs is depicted in Fig. 1(b).

Everything
on IP

IP on 
Everything

IPvX

(a) Internet architecture

Application 
layer

Link Layer

IP

Se
ns

or

Pu
b/

Su
b

??
?

(b) Adaptable network
architecture

File Exchange

Ethernet

Compression

(c) Stack without IP
protocol

Figure 1. Comparison of the Internet protocol stack and an adaptable network
architecture.

However, with the introduction of evolvable protocol stacks,
new demands are imposed on the hardware on which these
architectures can be implemented. To provide sufficient per-
formance and energy efficiency, it is desirable that not only
the software, but also the hardware platform can be adapted at
runtime. For this purpose, we use dynamically reconfigurable
architectures as hardware implementation platform for our
work.

The contribution of this paper is the presentation of an
adaptive networking environment which employs a flexible
networking stack mutable during run-time. The driving idea
is to split networking protocols into smaller units that can
communicate with each other. At run-time, we choose the
set of units and their composition which is best suited for
the given application and context. Moreover, our new flexible
networking stack utilizes run-time reconfigurable hardware
technology in order to optimize processing performance and
power consumption by dynamic hardware/software partition-
ing. Our approach leverages and combines previous research in
autonomous network architectures and run-time reconfigurable
hardware, especially operating system support for reconfig-



urable logic.
The remainder of this paper is structured as follows: in

section II we review the concept of adaptive networks and
introduce ANA, a network architecture delivering the concepts
that also appear in our proposed architecture. Section III gives
an overview of ReconOS, an operating system tailored for
embedded reconfigurable devices. Section IV shows how to
combine ANA with ReconOS in order to arrive at a run-time
reconfigurable adaptive networking architecture for embedded
devices. Section V concludes the paper.

II. ADAPTIVE NETWORKS

A. Related Work in Adaptive Networks

The composition of protocol stacks dedicated for a specific
use has been an ongoing research area for the past 15 years,
dating back to the x-kernel [1] which defines an explicit archi-
tecture for constructing and composing network protocols. In
the following years several projects were suggested and with
the Click modular router [2] one project achieved widespread
use. In the Click project the networking functionality is divided
into small elements where each performs a simple computation
such as decrementing a TTL or queuing a packet.

However, these projects are not targeted to a future network
environment in which the network is more heterogeneous
and should adaptively optimize its service. More recently,
many projects have been launched (e.g., within the FIND
initiative [3] in the US and the FIRE initiative [4] in Europe)
that target different aspects of future networks [5]. There is a
broad consensus in the community that in the future, network
functionality should be organized in flexibly composable small
building blocks. The ANA [6] project is fully in line with
this approach and provides a networking architecture in which
the available services can be adapted continuously. ANA
even allows for running completely distinct protocol stacks
and is thus well suited for a heterogeneous and mutable
computing environment. We present an overview over ANA
in section II-B and use it in section IV as a conceptual basis
for our architecture.

B. The Autonomic Network Architecture Project

The concepts developed in the Autonomic Network Archi-
tecture (ANA) project [7] form the foundation of our adaptive
networking architecture. In order to provide high flexibility,
ANA divides networking functionality into functional blocks
(FB) that may be combined as required by any given situation.
The functionality of a single FB can range from a full mono-
lithic network stack down to a small entity like computing a
checksum.

The dynamic combination of FB rests upon the concept of
indirection and is realized with so called information dispatch
points (IDPs). IDPs are inspired by the work on network
pointers [8] and are also somewhat similar to file descriptors
and sockets in Unix systems. Instead of a tight binding
between networking functions, where one function directly
calls another function, data is first sent to an IDP from where
it is forwarded to the next networking function. This layer

of indirection allows us to dynamically adapt the networking
stack by changing the bindings of IDPs to FBs.

ANA also introduces the concept of compartments. A
compartment is a set of FBs and IDPs with some commonly
agreed set of communication principles, protocols and policies.
Typical network compartments are an Ethernet segment, the
public IPv4 Internet, a private IPv4 subnet, the DNS, or peer-
to-peer systems like Skype.

In order to allow the construction of arbitrary network
stacks, ANA provides a compartment API (application pro-
grammer interface) which describes all communication be-
tween different compartments and bases on a publish/resolve
architecture. The two key terms are the service and the context.
A service describes a specific functionality, and a context
describes where this functionality is available. With these two
terms ANA offers the following six functions (noted in a
simplified C-style syntax).

• IDPs publish(IDPc, CONTEXT, SERVICE)
• int unpublish(IDPc, IDPs)
• IDPr resolve(IDPc, CONTEXT, SERVICE)
• int release(IDPc, IDPr)
• void* lookup(IDPc, CONTEXT, SERVICE)
• int send(IDPr, DATA)

An FB advertises its functionality by publishing it in a certain
context. A published service can be resolved by other FBs,
and the resulting IDP can be used to send data to the resolved
service. Besides service resolution, one can also lookup a
service to obtain reachability information. This is useful for
services such as the DNS (Domain Name System).

If a resolved service is no longer needed, the corresponding
IDP can be released. Finally, if an FB stops offering a service
it will unpublish it.

In the function prototypes above, the IDPc identifies the
compartment in which the API call will be executed. IDPs

is created by the publish primitive and identifies a published
service. IDPr is created by the resolve primitive and identifies
a communication channel that can be used to send data.

In addition to network compartments, ANA has a special
compartment called the node compartment. ANA considers
each networking node to be itself a network composed by the
functional blocks running on the host. The node compartment
thus encompasses all FBs and IDPs within a node. In the
node compartment, the API is implemented by a node-local
controller, called Minmex. When an FB is loaded onto a node,
the FB registers itself with the Minmex and receives in return
the IDP of the node compartment. This IDP will be used for
further communication from the FB to the node compartment.
Additionally, the Minmex keeps track of all the loaded FBs
and of the mapping from IDPs to FBs.

To illustrate the use of this API, we present a simple
communication setup that will end up with the protocol stack
depicted in Fig. 1(c).

Since each node is internally organized as a compartment
the communications inside a node are also setup via
the compartment API. For example, a functional block
implementing the Ethernet protocol can publish itself inside



the node compartment with the following primitive:

e ← publish(n, ".", "ETHERNET")

The first parameter is the IDP n which is bound to the
node compartment and provided to each FB when it registers
with the Minmex. The second parameter is the context. In
our example, the context is set to ".", a special context that
restricts all operations to the local node. The publish function
creates and returns the IDP e (randomly generated) which is
now bound to the Ethernet FB. Subsequently, a second FB
which wants to use the Ethernet FB will be able to resolve
its IDP with the following request:

e ← resolve(n, ".", "ETHERNET")

The calling FB (e.g., a simple "file exchange application"
called DemoEx) can now use the IDP e to publish its service
in the Ethernet compartment.

i ← publish(e, "*", "DemoEx+contact")

In this example the application publishes
"DemoEx+contact" in the Ethernet compartment. The
context "*" specifies the largest possible scope as understood
by the compartment. With regard to the DemoEx application
the previous function call announces that the application is
willing to share a file identified by "contact".

With the resolve primitive, DemoEx can search for other
"contact" files and establish a connection to a remote host
offering this file:

r ← resolve(e, "*", "DemoEx+contact")

This primitive causes the Ethernet compartment to search
for a node that offers "DemoEx+contact" and to build
an information channel to it. This information channel is
identified by IDP r and data can be sent to it with the
following primitive:

send(r, "get file")

This step completes the protocol stack setup for this ex-
ample. The current packet flow and the required management
tables in the Minmex are depicted in Fig. 2(a).

However, since the environment may change during a com-
munication, this stack can be updated while a file is transfered.
In the following part of this example, we assume that a
monitoring module has determined that the utilization of the
transmission medium is quite high and that the load should be
reduced to avoid congestion. To reduce the number of bits that
will be transmitted, a compression module can be inserted into
the network stack. Within the ANA architecture this is done
by loading a Compression functional block, e.g., a Huffman
Coding FB [9], and re-mapping the IDP bound to the Ethernet
block to this Compression block. Due to this re-mapping, all
packets are forwarded to the Compression block, which will
be able to forward the data to the Ethernet block. This re-
mapping is shown in Fig. 2(b). Note, this reconfiguration of

the protocol stack can be done without any explicit support of
any of the functional blocks.

FB 2

FB 1 r→ FB 2

r

Ethernet -> FB 2

(a) FB 1 (DemoEx) is sending to IDP
r that is mapped to FB 2 (Ethernet).

FB 2

FB 3

FB 1 r→ FB3
h → FB2

r

h

Ethernet -> FB 2
Compression-> FB 3

(b) FB 1 is still sending to IDP r, but
now it is mapped to FB 3 (Compres-
sion).

Figure 2. The protocol stack can be easily adapted by changing the mapping
of IDPs to functional blocks.

Evidently, the dynamic change in the communication pro-
tocol during runtime has to be synchronized between sender
and receiver. For this purpose, ANA also uses the same
publish/resolve mechanism. A detailed discussion of protocol
changes is out of the scope of this paper. Many other aspects
were also only touched, e.g., the interpretation of the keywords
used to setup the protocol stack and the configuration of FBs
that are included in the protocol stack.

Obviously, the ANA architecture allows for much more
complex protocol stack setups than this simple two-layer
example.

III. PROGRAMMING RECONFIGURABLE HARDWARE FOR
ADAPTIVE NETWORKING FUNCTIONS

Our target system is a reconfigurable Systems on Chip
(rSoC) – an embedded device equipped with an FPGA that
contains an embedded CPU. We have shown in our previous
work [10] in the area of wearable computing, that reconfig-
urable hardware is a highly suitable technology to address the
need for energy efficient and high performance processing.
In many cases, reconfigurable hardware is able to outperform
general-purpose CPUs by many orders of magnitude in perfor-
mance and energy efficiency and can achieve almost ASIC-like
performance, while still being fully programmable. Moreover,
to achieve highest flexibility, we use FPGA families that
allow us to change the configuration of the logic cells at run-
time. Partial run-time reconfiguration enables the processing
of data in one part of the device, while another part is
being reprogrammed. We will need this feature to dynamically
include new functional blocks in the hardware.

Admittedly, FPGAs are somewhat difficult to program as
current implementation tool flows still require substantial
knowledge of digital logic design. Moreover, in rSoCs hard-
ware accelerators are traditionally implemented as slave co-
processors to a single microprocessor. They are typically
connected to a central memory bus together with other periph-
erals like memory and I/O controllers. In order to program
such a platform, the developer needs specific knowledge of
all employed accelerators, which hinders design productivity,
portability, and scalability – factors of major importance when
considering the rising complexity of reconfigurable hardware



devices. Furthermore, the highly specific interfaces and pro-
tocols of the accelerator unnecessarily complicate the use of
partial reconfiguration to adapt the system’s hardware/software
partitioning during run-time.

In order to provide a practical abstraction for program-
ming reconfigurable CPU/FPGA systems that hides the hard-
ware/software boundary, we have extended the multithreaded
programming model – already in widespread use within
software-based systems – towards reconfigurable hardware.
This approach models hardware modules as hardware threads
on the same level with software threads. Hardware threads
interact with other threads using the same programming model
primitives as their software counterparts. In our previous
research on multithreaded reconfigurable hardware, we have
augmented existing operating system kernels, such as Linux,
with hardware and software extensions for integrating hard-
ware and software threads into a single execution environment
called ReconOS [11] [12].

ReconOS applications are thus typically crafted from the
following operating system objects:

Threads are the basic units of execution which make up an
application. It is up to the developer to partition an application
into threads, which then communicate and synchronize using
other operating system objects.

Semaphores and mutexes provide means for high-level
synchronization; they can be used to sequentialize execution of
threads, to protect critical code regions, or to manage exclusive
access to shared resources.

Shared memory, message queues and mailboxes are used
for inter-thread communication. Generally, access to shared
memory must be protected by synchronization primitives, as
is necessary for any shared resource. Message queues and
mailboxes occupy a special niche among the operating system
objects – they provide both communication and synchroniza-
tion at the same time.

The fact that all inter-thread activity is carried out using
only these objects provides complete transparency within
these interactions; a thread does not need to know whether
its communication or synchronization partners are located
in hardware or software – which, in turn greatly facilitates
design space exploration with respect to the hardware/software
partitioning. Furthermore, the decomposition of an application
into threads provides a suitable set of modules with a single,
well-defined interface which is highly amenable to partial
reconfiguration. Also, as long as the interfaces to the respective
operating system objects are supported, the interoperability
and portability of threads can be easily maintained when
moving to a different target platform.

A. ReconOS Hardware Architecture

Being an extension to conventional software operating
systems, ReconOS relies heavily on the existing host OS
kernel for the implementation of its operating system objects.
The main part of any ReconOS system is consequently a
central microprocessor executing the host operating system
kernel. Current implementations of ReconOS use a two-bus

architecture for control and data communication between hard-
ware threads and the OS kernel, although the concept is not
limited to using a bus topology. Hardware threads are located
within specified regions of the reconfigurable fabric, called
slots, which are connected to the communication infrastructure
through a dedicated hardware module, the OS interface (see
Section III-C). Individual hardware threads can be exchanged
during run-time by means of partial reconfiguration of the
FPGA, which provides a means of dynamically adapting the
system hardware/software partitioning to changing require-
ments.

The area of the individual slots is defined upon system
design and should reflect the area requirements of the antic-
ipated hardware threads. Upon the rescheduling of hardware
threads area requirements should be considered in order to
avoid hardware fragmentation.

CPU

bus 
arbiter

OSIF

hw thread

bus macro

reconfigurable area

system bus

memory 
controller DRAMICAP

OSIF

bus macro
en en

slot slot

hw thread

Figure 3. ReconOS system architecture.

The architecture of an example ReconOS system with two
slots is depicted in Figure 3. Besides the main CPU and
the operating system interfaces, the main bus also connects a
DRAM controller and the FPGAs internal configuration access
port (ICAP), which is used for dynamic partial reconfiguration.

B. Hardware Threads

In the programming model presented by ReconOS, hard-
ware threads are written in VHDL and usually comprise
two parts: a controlling finite state machine (FSM), which
handles all operating system interactions, and custom user
logic, which performs the actual computations of a thread.
Both parts are completely user-defined and communicate using
thread-specific handshake signals. The FSM is connected to a
dedicated hardware module, the OSIF, and sequentializes all
accesses to operating system functions from within the thread.
To perform OS calls, the thread designer embeds functions
from a VHDL library provided by ReconOS into the FSM.
Because of the special structure of the FSM, which is required
by ReconOS, its state transitions can be suspended by the
operating system, effectively providing a hardware thread with
the means to perform blocking operating system calls.



C. Operating System Interface
The operating system interface (OSIF) is a dedicated mod-

ule connecting a hardware thread located inside a reconfig-
urable slot to the system’s communication infrastructure. The
OSIF offers a wide set of operating system services to its
hardware thread, some of which it can perform directly in
hardware (such as shared memory accesses), while others must
be relayed to the OS kernel on the main CPU. There are a num-
ber of specialized communication extensions available to the
OSIF, such as side-channel communication networks or point-
to-point FIFOs, which increase the available communication
bandwidth between hardware threads at the cost of flexibility.
These communication extensions are transparently mapped
onto the ReconOS programming model primitives already
available to hardware threads, allowing them to transparently
take advantage of the increased bandwidth.

D. Delegate Threads
In order to provide the host OS services to its hardware

threads, ReconOS associates a dedicated software thread, the
delegate, with every hardware thread instance. Whenever a
hardware thread requests an operating system call that is to
be handled in software, the OSIF forwards this call to the
appropriate delegate thread by means of an interrupt. The
delegate thread then retrieves the call parameters and performs
the actual OS API call on behalf of the hardware thread. Any
return values are transparently passed back to the initially call-
ing hardware thread. Thus, all hardware threads appear to the
host OS kernel as regular software threads, disguised by their
delegate, which provides excellent flexibility, transparency and
portability of the programming model across different target
platforms and host operating systems.

IV. AN EVOLVABLE NETWORK ARCHITECTURE FOR
EMBEDDED DEVICES

In this section we introduce our evolvable network archi-
tecture for embedded devices. It relies on the ReconOS/Linux
operating system to implement adaptive networking concepts
from the ANA project on a modern reconfigurable hard-
ware/software platform.

A. Network Modules
Our proposed architecture takes up on ANA’s modulariza-

tion of networking functionality into functional blocks (FB)
and maps each FB to a collection of software and hardware
threads running under ReconOS. Fig. 4 displays the organiza-
tion of an FB consisting of one software control thread, one
software data processing thread and an arbitrary number of
hardware data processing threads. The software control thread
is the only required thread and responsible for setting up
connections between FBs. The control thread thus implements
the compartment API with the primitives publish, unpublish,
resolve, release and lookup. Those functions are not time criti-
cal operations, therefore it is no performance bottleneck if they
are implemented in software. Data processing is implemented
by another software thread or, depending on the performance
requirements and suitability, by one or more hardware threads.

sw 
control

sw data 
proc.

hw data 
proc.

hw data 
proc.

hw data 
proc.

hw data 
proc.

Figure 4. Example of a network module.

B. System-on-Chip Architecture

Figure 5 sketches the architectural layout of a compute node.
Based on the ReconOS multithreaded programming model
and architecture, a compute node employs a CPU core, a
number of reconfigurable hardware cores, and memory and
I/O blocks. To allow for an efficient exchange of network
packets, the architecture foresees two on-chip interconnects,
a shared system bus which all processing cores can access
and a specialized multibus for interconnecting the hardware
cores.

The shared system bus enables communication between
software cores and between software and hardware cores, re-
spectively. Table I summarizes the performance of the different
communication primitives provided by ReconOS. From there
it is obvious that the right communication mechanism has to
be chosen with great care. Related software prototypes for
adaptive networking architectures such as the current ANA
implementation involve copying network packets as messages
from one FB to another. Although this has the advantage
that the two FBs cannot corrupt each others address space,
it is rather inefficient in ReconOS as can be seen in Table I.
Hence, for communication between software threads we fore-
see a shared memory approach which allows for an order of
magnitude higher communication bandwidth.

The interface between software and hardware FBs is im-
plemented through a combination of ReconOS message boxes
and burst read and write operations. Messages are written from
the hardware thread’s local RAM to the system memory with
the ReconOS burst interface. However, the software thread is
notified of new messages by sending a notification through a
message queue. To allow for an optimal performance, each
hardware thread has not only one but two local RAMs, one
storing the packets traveling upstream and the other storing the
packets travelling downstream. With this arrangement the two
flows can be processed independently until they are sent to a
software thread, at which point they need to be synchronized,
since only a single system memory exists.

Communication between hardware threads is more involved
since all hardware cores can execute in parallel. The shared
memory bus cannot provide the throughput required for mul-
tiple parallel transactions. For example, in order to support
1 Gbit/s Ethernet for simultaneous data read and write we
require a bandwidth of 2 Gbit/s. Although the shared system
bus uses 64 bit words and operates at 100 MHz, delivering
a theoretical bandwidth of 6.4 Gbit/s, the actual maximum
transfer rate between hardware and memory as shown in
Table I only reaches close to 1.6 Gbit/s, which is not enough to



allocate one single 1 Gbit/s transmission between software and
hardware, even without additional data forwarding between
hardware threads.

Our architecture allows the processing of packets in a
pipelined manner where each pipeline stage consists of a
hardware thread. Unlike conventional pipelining, our packet
processing pipeline is not linear but may have branches and
mergers. As underlying interconnect, we employ a multibus
as shown in Fig. 5. Each hardware thread is assigned a bus
from which it receives data via an FIFO-like interface. A
hardware thread can further send data to the buses assigned to
other threads. Consequently, sending requires an arbitration
mechanism. For arbitration, round robin or thread priority
based schemes can be used. Alternatively, more complex
arbitration schemes with access control based on the priority
of individual packets are conceivable.

HW FB 1 
(Ethernet)

SW FB 1 
(e.g. 

Ethernet)

HW FB 2 
(Firewall)

SW FB 2 
(e.g. 

Firewall)

RAMother HW 
thread

SW FB 3
(e.g. 

Encryption)
other SW 

thread

Minmex
(Controller)

HW FB 3 
(Encryption)

SW FB 4
(e.g. 

Transport 
protocol)

PLB

PHY

CPU

other 
peripheral

FIFO

IDP/FB mapping table

Figure 5. Networking functionality can either be executed in HW or in SW.

Table I
PERFORMANCE OF RECONOS COMMUNICATION PRIMITIVES.

Primitive Throughput [MB/s]
memory → hardware (burst read) 168
hardware → memory (burst write) 193
software ↔ software (memcopy) 13
hardware ↔ hardware (mbox read and write) 127
hardware ↔ software (mbox read and write) < 0.1
hardware ↔ software (mqueue read and write) 16

Table II
AREA REQUIREMENTS OF TYPICAL HARDWARE THREADS.

module slices flip-flops LUTs
Ethernet 1947 (4.6 %) 2335 (2.8 %) 3426 (4.0 %)
Blowfish 12090 (28.7 %) 17095 (20.3 %) 19138 (22.7 %)
RC5 13368 (31.7 %) 13655 (16.2 %) 24564 (29.1 %)
The percentages given in parentheses refer to the relative logic
utilization of a Virtex-4FX100 target platform.

C. Thread Switching and Dynamic Reconfiguration

The dynamic assembly of networking modules is supported
by modeling them as threads in ReconOS. Adding or exchang-
ing software threads is straight-forward, and exchanging hard-
ware threads or exchanging software threads with hardware
threads and vice versa is enabled by the partial reconfiguration
capability of ReconOS.

Table III
RECONFIGURATION OVERHEAD FOR DIFFERENT SLOT SIZES.

slot size [slices] max. bitstream size [kBytes] overhead [ms]
1024 94.8 0.2
4096 379.3 1.0
8192 758.5 1.9
12288 1137.8 2.9
16384 1517 3.9
All estimations are based on slots with multiples of 64 slices in
height on a Virtex-4FX100 target platform.

The physical size of the reconfigurable areas on the FPGA
(the slots) is determined at design time, taking into account
the actual sizes of the possibly required hardware threads. As
an example, Table II lists the area requirements of an Ether-
net core and two example cores implementing cryptographic
functions. Since most FBs are less complex than cryptographic
functions, the average FB size will be closer by the size of
the Ethernet FB. The resource requirements are also given
relative to a medium-sized FPGA device. The results show
that, depending on the actual sizes of hardware threads and the
selected FPGA, implementations with 10-20 hardware threads
are realistic on today’s technology. However, it is impossible
to provide all functionality that will be required during the
runtime of the system upon startup, since networking require-
ments are highly dynamic and depend on user behavior. There
are two aspects that demand a reconfiguration of the system
at runtime.

1) Reconfiguration upon changes in protocol stack.
As discussed in Section II the protocol stack can be
adapted as required. There are several scenarios with
respect to the frequency of adapting the protocol stack.
In a statically assembled system, all required software
and hardware modules are compiled together and loaded
at startup. In a more interesting scenario, the single
node is able to serve several applications and adapts
the protocol stack whenever a new application with new
requirements is started. In a third scenario networking
functionalities such as encryption or compression can
be added to existing network traffic flows at runtime.
As all three scenarios happen relatively infrequently, the
thread exchange overhead of the system does not have
a significant impact on its functionality.

2) Reconfiguration upon changes in network traffic mix.
Depending on the fraction of traffic that needs a certain
protocol functionality the number of hardware threads
that are providing this functionality has to be adapted.
If a particular functionality is used by many packets
this functionality could be implemented as more than
one hardware thread and a functionality that is only
used rarely may be implemented completely in sw. An
optimal hardware/software partitioning depends on the
current traffic mix, the processing time of a packet
in a given FB and the system overhead. Therefore a
monitoring block collects information such as utilization
of each FB in hardware, CPU usage of FBs in SW,



available battery power, peak packet rate of packets from
a given protocol, running applications, etc.
Based on our estimations of the reconfiguration overhead
for differently sized slots shown in Table III, it appears
feasible to re-evaluate current environmental conditions
and network traffic composition several times per second
to determine a more optimal hardware/software parti-
tioning of the functional blocks that make up the current
protocol graph.

While the individual threads can be exchanged at any time,
the communication infrastructure will not be dynamically
reconfigured.

In the software implementation the mapping of IDPs to
functional blocks is done centrally in the Minmex. Such a
central Minmex is, however, impractical for the proposed
architecture since we provide parallel execution of FBs. A
central Minmex would form a performance bottleneck, no
matter whether it is implemented in software or hardware. For
this reason, each hardware thread holds a partial replication
of the Minmex IDP-to-FB mapping table. The updating of
these tables is initiated by the Minmex and forwarded to the
hardware threads by the software control thread of a network
module.

V. CONCLUSION

We have shown that technologies developed in the research
fields of reconfigurable computing and adaptive networks are
a perfect match to address the primary architectural challenges
in a compute node architecture that can adapt its compute and
network performance to the varying requirements of the users
and applications running in the network while being power
efficient at the same time.

We have introduced a new hardware and software architec-
ture as a platform for energy efficient adaptive networking.
In this architecture, we leverage the ANA adaptive network
architecture model and the ReconOS operating system for
reconfigurable computers. We have extended the ANA archi-
tecture with the functionality to implement network services
also in hardware. This allows us to maintain the full ad-
vantage of adaptive networking systems, while providing the
necessary performance by migrating performance critical or
delay sensitive network services to hardware, while uncritical
functionality can still be implemented in software. Whenever
the network’s traffic mix (e. g., the fraction of packets that
requires a specific processing) or the available protocols
change, the choice which networking functions are off-loaded
to hardware and which remain in software has to be re-
evaluated. Since we implement all networking modules that
shall be considered for hardware execution as a ReconOS
hardware thread, the ReconOS scheduler allows for seamlessly
migrating this functionality between hardware and software.

For evaluating the proposed architecture, we have developed
a prototype based on a Xilinx Virtex-II-Pro FPGA evaluation
board. This prototype has helped us to get first insights into the
practical realization of the architecture. We have ported Linux
and the ANA protocol stack to the development platform.

As a proof-of-concept for a hardware networking module, we
have implemented a functional block that processes Ethernet
packets.

Ongoing work focuses on two main aspects. First, we are
working on the implementation of encryption modules and
on integrating them into the ANA framework for studying
the interaction of software and hardware networking modules
with more complex applications targeted at larger FPGA
devices (e. g., Virtex-4FX). Second, building on top of the
existing implementation, we will further complete and refine
our architecture by developing algorithms for (a) determining
the interconnections of the networking modules and for (b)
choosing the hardware/software partitioning. Both algorithms
need information about their node and the environment in
which they are running. While determining the module in-
terconnection mainly requires information about running ap-
plications and the connectivity to the peer nodes, choosing
a proper hardware/software partitioning can be based on
node-local information such as power consumption, available
hardware slots or the frequency of packets that need processing
by a given module. To enable these online algorithms, we
will implement dedicated monitoring modules which gather
relevant data at run-time.

ACKNOWLEDGMENT

This work was supported partly by the ANA (Autonomic
Network Architecture) project [6] which is funded by the
European Union Information Society Technologies Framework
Programme 6, and partly by the German Research Foundation
under project number PL 471/2-2.

REFERENCES

[1] N. C. Hutchinson and L. L. Peterson, “The X-Kernel: An architecture
for implementing network protocols,” IEEE Trans. Softw. Eng., vol. 17,
no. 1, pp. 64–76, 1991.

[2] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek, “The click
modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
2000.

[3] “FIND – Future Internet Design (FIND) - US National Science Foun-
dation,” at http://www.nets-find.net/, (May 09).

[4] “Future Internet Research and Experimentation (FIRE) initiative,”
http://cordis.europa.eu/fp7/ict/fire, (May 09).

[5] Subharthi Paul, Jianli Pan and Raj Jain, “Architectures for the Future
Networks and the Next Generation Internet: A Survey,” 2009, http://
www.cse.wustl.edu/~jain/papers/i3survey.htm(Oct09),.

[6] “Autonomic Network Architecture - EU Project (2006-2009),” http://
www.ana-project.org(Oct09),.

[7] G. Bouabene, C. Jelger, C. Tschudin, S. Schmid, A. Keller, and
M. May, “The autonomic network architecture (ANA),” Selected Areas
in Communications, IEEE Journal on, vol. 28, no. 1, pp. 4 –14, Jan.
2010.

[8] C. Tschudin and R. Gold, “Network pointers,” SIGCOMM Comput.
Commun. Rev., vol. 33, no. 1, pp. 23–28, 2003.

[9] D. Huffman, “A method for the construction of minimum-redundancy
codes,” in Proceedings of the I.R.E., 1952, p. 1098–1102.

[10] C. Plessl, R. Enzler, H. Walder, J. Beutel, M. Platzner, L. Thiele,
and G. Tröster, “The case for reconfigurable hardware in wearable
computing,” Personal and Ubiquitous Computing, vol. 7, no. 5, pp. 299–
308, Oct. 2003.

[11] E. Lübbers and M. Platzner, “ReconOS: Multithreaded programming for
reconfigurable computers,” ACM Transactions on Embedded Computing
Systems Special Issue (CAPA), 2009, to appear.

[12] ——, “ReconOS: An RTOS supporting hard- and software threads,”
IEEE Int. Conf. on Field Programmable Logic and Applications, 2007.


