
On-The-Fly Computing: A Novel Paradigm for Individualized IT Services
(Invited Paper)

Markus Happe, Friedhelm Meyer auf der Heide, Peter Kling, Marco Platzner, Christian Plessl
University of Paderborn, Germany

{markus.happe, fmadh, peter.kling, platzner, christian.plessl}@uni-paderborn.de

Abstract

In this paper we introduce “On-The-Fly Com-
puting”, our vision of future IT services that will
be provided by assembling modular software compo-
nents available on world-wide markets. After suitable
components have been found, they are automatically
integrated, configured and brought to execution in an
On-The-Fly Compute Center. We envision that these
future compute centers will continue to leverage three
current trends in large scale computing which are
an increasing amount of parallel processing, a trend
to use heterogeneous computing resources, and—in
the light of rising energy cost—energy-efficiency as a
primary goal in the design and operation of computing
systems. In this paper, we point out three research
challenges and our current work in these areas.

1. Introduction

Today we find ourselves on the brink of a new
era in the development and implementation of services
of information technology (IT). We are witnessing
the beginnings of a shift away from the 40-year-old
principle of either acquiring software by purchasing
expensive, relatively inflexible standard solutions or
relying on the even more expensive method of commis-
sioning customized solutions from external software
companies or in-house software departments. Service-
oriented architectures provide methods for tailoring
existing software components into customized IT ser-
vices where the computing resources for executing
these services can be commissioned on-demand only
when necessary and only in the required form by using

This work is partially supported by the German Research Founda-
tion (DFG) within the Collaborative Research Center “On-The-Fly
Computing” (SFB 901) and by the Graduate School on Applied
Network Science (GSANS).

cloud and grid computing approaches. These initial
advances towards a new way of providing IT services
are the starting point for our research activities in On-
The-Fly Computing.

With On-The-Fly Computing we aim at devel-
oping techniques and processes for automatic (on-
the-fly, OTF) configuration and provision of individ-
ual IT services out of a basis of services that are
available on world-wide markets. Figure 1 shows an
example OTF Computing scenario for the domain of
optimization. A user demands an application software
for a given optimization problem and contacts a so-
called OTF service provider for optimization. Based
on a proper specification of the desired application,
the OTF service provider uses domain knowledge to
decompose the application into smaller services such
as data management, model generation, model solving,
visualization and decision support. For each of these
services, the OTF provider searches world-wide mar-
kets for available and matching services. After com-
posing the found services to the overall application,
one or more OTF computer centers are commissioned
to execute the application. In addition to methods
for specifying, searching, matching, configuring and
provisioning of services, the OTF scenario involves
developing methods for quality assurance, security,
interaction and market developments.

At the University of Paderborn we investigate On-
The-Fly Computing within a so-called Collaborative
Research Centre (CRC), which in the German funding
landscape is a large-scale and long-term fundamental
research project aligning the work of some 40 re-
searchers for up to 12 years. CRCs are highly com-
petitive programs established at universities to enable
researchers to pursue an ambitious and outstanding re-
search program crossing the boundaries of disciplines,
institutes, departments and faculties.

In this paper we first survey the vision and goals

Model
Generation!

Model
Solving! Visualization! Decision

Support
!

Data
Management

!

Configured
System

OTF Service Provider
for Optimization

ROKA GS®

Plant
Simulation

OTF Compute
Center

User

OTF Service Providers
for Subdomains

Figure 1. Exemplary OTF Computing scenario for the domain of optimization.

of the CRC On-The-Fly Computing and then discuss
in more detail research challenges and approaches for
the organization and operation of future On-The-Fly
compute centers.

2. Vision and Goals of OTF Computing

The vision of the CRC On-The-Fly Computing1 is
that in future IT services will be individually and au-
tomatically configured and implemented by combining
flexible services available on free world-wide markets.
With this vision our CRC looks far into the future of
IT development and usage, the transformation of which
we are already experiencing today. In order to research
the extent to which this vision can be realized, we will
develop methods and techniques that enable an almost
entirely automatic configuration, implementation and
adaptation of IT services from services available on
world-wide markets, guarantee the protection not only
of the services acquired in this way, but also of the
active participants in the markets, and support the
organization and further development of these markets
and the necessary interaction between those involved.

1. For more information see http://sfb901.uni-paderborn.de/

Therefore, we also study ways of organizing markets
whose participants maintain a lively service landscape
by dedicated entrepreneurial action.

To reach these goals, computer science experts
from diverse disciplines such as software technology,
algorithmics, computer networks, computer systems
architecture, security and cryptology are working hand-
in-glove with economists who contribute their specific
expertise on how to promote the organization and
further development of the market. Furthermore, busi-
ness information specialists contribute their expertise
in operations research, which flows directly into an
application domain for testing the methods and tech-
niques developed in the CRC.

The research activities of CRC On-The-Fly com-
puting are divided into three areas:

• Algorithmic and economic foundations for or-
ganizing large dynamic markets
The basis for organizing the networks of par-
ticipants and services in the markets are meth-
ods of distributed computing, since the sheer
size and dynamics of these networks render
central control impossible. For this reason, we
are researching local methods that would allow

the dynamics of the networks to be controlled
and matched to the respective current require-
ments. Moreover, we are developing economic
concepts that allow specific stimuli to be used
as a means of controlling the behavior of
the participants and, ultimately, ensuring the
achievement of a globally successful market.

• Modeling, composition and quality analysis
for On-the-Fly Computing
Software technology methods that enable an
exact description of services, and methods that
are both easy and extensive enough for these
tasks, are a prerequisite for seeking, finding
and configuring services. The achievement of
high product quality in terms of functional
and non-functional characteristics demands in-
novative methods of analysis and verification.
Concepts from the fields of logic and heuristic
search methods are required for the configu-
ration of new services.

• Reliable execution environments and applica-
tion scenarios for On-The-Fly Computing
In this area we are concerned with the ques-
tions of robustness and security of markets
and the processes of service provisioning, as
well as the organization of highly heteroge-
neous compute centers, denoted as On-the-Fly
Compute Centers. Furthermore, we also work
towards an application case study to perform
long-term trials of our innovative methods. In
this case study we are concerned with pos-
sible methods for modeling, configuring and
optimizing systems for supply and logistics
networks.

3. On-The-Fly Compute Centers

The realization of the OTF computing vision re-
quires a tight interaction of numerous processes that
autonomously search, compose and validate software
components to configure an individualized IT service.
In this chapter, we focus on three challenges related
to the execution of these composed services in OTF
compute centers. We envision that future compute
centers will continue to leverage three main trends
in large scale computing which are a) an increasing
amount of parallel processing at the node (cluster)
and chip-level (multi-/many-core), b) an increasing
amount of heterogeneity through the use of computing
accelerators such as field-programmable gate arrays

(FPGAs) or general-purpose graphics processing units
(GPUs), and c) a further growing importance of energy
consumption as a cost factor.

3.1.Challenge 1: Efficient usage of energy in
future data centers

Over the last decade, energy usage has become a
major design issue for data centers. Several studies
show that the energy used for both the actual com-
putation as well as the cooling constitutes a large part
of the total operational costs (see, e.g., [1]). Our vision
of OTF computing will not only increase the overall
demand for computational power, but will also require
efficient ways to cope with a large number of requests
at short notice. In combination with improvements
on the technical level, algorithmic research has great
potential to improve both the performance and the
(energy) efficiency of data centers. See for exam-
ple [2] for a good insight on the role of algorithms to
fully exploit the energy-saving mechanisms of modern
systems. Two of the most prominent techniques for
power saving are dynamic speed scaling (also known
as voltage scaling) and power-down. While the former
allows a system to save energy by adapting its speed
to the current workload, the latter can be used to
transition into a special sleep mode to conserve en-
ergy. Scheduling algorithms deployed in OTF compute
centers – our vision of future data centers – must be
able to make use of these and other techniques in a
scenario where only limited (if any) information about
the future workload is available (also referred to as the
online scenario).

Basics of Energy-efficient Scheduling. Algorithmic
research on energy-efficient scheduling algorithms was
initiated by Yao et al. [3]. They considered a single-
processor system where jobs (or tasks) arrive over time
and must be assigned to the processor. Each job j
comes with its own release time rj , deadline dj , and
workload wj . Note that preemption is allowed in this
model. In addition to the job assignment, the scheduler
can use speed scaling to change the processor’s speed
at any point in time. Higher speeds consume higher
energy, where the exact relation is modeled by the
power function P (s) = sα (energy consumption at
speed s). Here, α > 1 is a system depended constant.
Typically, the power consumption of real-world CMOS
based systems can be approximated by choosing α ∈
{2, . . . , 5} [4]. The objective is to finish all jobs until
their deadline while minimizing the invested amount

of energy. Here, the energy E(S) of a schedule S is
power integrated over time: E(S) =

∫∞
t=0

P (s(t)) dt,
where s(t) is the system’s speed at time t. It is essential
to note that speed scaling drastically changes the prob-
lem’s nature compared to classical (deadline) schedul-
ing. For example, it is no longer infeasible to solve the
problem optimally as long as one has knowledge of all
jobs prior to their arrival (also referred to as the offline
scenario). Yao et al. derived a polynomial time optimal
offline algorithm as well as the two polynomial time
online algorithms Optimal Available (OA) and Average
Rate (AVR). Up to now, OA remains one of the most
important algorithms in this area, as it is used as a basic
building block in many scheduling strategies. Using an
elegant amortized potential function argument, Bansal
et al. [5] were able to show that OA’s competitiveness
is αα. In other words, even without knowing the future
OA is at most by a factor of αα worse compared
to an optimal offline algorithm. In the past 15 years,
algorithmic research has considered many variations
of Yao et al.’s basic model, including multiprocessor
variants, systems featuring a sleep state, processors
with a discrete set of possible speeds, throughput-based
objectives instead of deadlines, and combinations of
these. Albers [6] gives a comprehensive overview over
the different models and known results.

Relevant Models for OTF Compute Centers. The
focus of our models and algorithms for OTF compute
centers is twofold: On the one hand, we want to capture
the profitability aspect of data centers, ensuring that
our schedules restrict the amount of energy invested
into jobs of low value (for which customers pay only
a small amount of money) and operate the data center
as cost-effectively as possible. On the other hand, we
have to deal with the online variant of the problem,
where the scheduler has no knowledge about the
future demand of computational resources (which may
change frequently and arbitrarily in the OTF scenario).

One of our most basic models is the first to
combine the two most prominent energy conservation
techniques (speed scaling and power down) and profit-
oriented scheduling models [7]. In this model, a job j
has an additional value vj . In contrast to the model by
Yao et al., we no longer need to finish all jobs until
their deadline. However, when missing a deadline we
suffer a loss equaling the job’s value. Thus, instead
of merely minimizing the invested energy, we want to
minimize the invested energy plus the loss suffered due
to missed deadlines. Moreover, our model takes into
account the system’s overhead (conserving the contents
of registers, maintaining communication sockets, . . .)

speed

po
w

er

critical speed profitable speed
 (of some job)

Figure 2. Our algorithm tries to use job speeds
that essentially stay in the shaded interval.

by modeling the processor’s power consumption at
speed s as P (s) = sα + β. Thus, even when running
at speed zero the processor’s energy consumption is
β > 0. To avoid this overhead, the processor can enter
a sleep state, in which it consumes zero power. Waking
up from this sleep state causes an additional cost of
γ > 0. Our major insight is that the combination of
speed scaling, sleep state, and profitability increases
the problem complexity substantially. While, sepa-
rately, each of these aspects allows for a simple online
algorithm with constant competitiveness, we can show
that their combination causes any such algorithm to
become arbitrarily bad. It turns out that the maximum
value density δmax (i.e., the ratio between a job’s value
and its workload) is a parameter that is inherently
connected to the necessary and sufficient competitive
ratio achievable for our online scheduling problem.

Theorem 1 (see [7]). The competitive ratio of any
algorithm whose scheduling decisions are solely based
on the current system state and job properties is at
most Θ(δmax). Moreover, there is such an algorithm
that achieves competitiveness αα + 2eα+ Θ(δmax).

The proposed algorithm uses a greedy sleeping
policy, suspending the processor whenever the energy
consumed while idle reaches γ. Moreover, it features
a minimal critical speed (scheduling jobs with a
slower speed is guaranteed to incur a loss) and a job-
dependent maximum profitable speed (see Figure 2).

Note that the above model is not yet suited to model
the computing resources of a large scale data center,
as it considers only a single processor. In our current

work, we overcome this weakness and extend the
profitability and speed scaling aspect to multiple pro-
cessors. More exactly, we achieve substantial improve-
ments over a result by Chan et al. [8]. They showed
that given job values and one speed-scalable processor
(no sleep state), a competitiveness of αα + 2eα is
achievable. Using a new and significantly different
technique based on work by Gupta et al. [9], we derive
an algorithm for multiple processors and with an im-
proved competitiveness of αα. Our technique is based
on primal-dual methods known from linear programing
applied to a convex programming formulation of our
scheduling problem.

Current Research. Currently, our research concen-
trates on models and algorithms for more heteroge-
neous architectures and more sophisticated preemption
mechanisms. As homogeneous parallel systems start
to reach their limits in scalability (especially due to
communication and bandwidth bottlenecks), more and
more experts see heterogeneous systems as the next
major step in the evolution of computer architec-
tures. Thus, researchers experiment with heterogeneous
chips, featuring not only many hundreds or even thou-
sands of cores, but different types of cores (CPUs,
GPUs, FPGAs, . . .). Such architectures pose many ex-
citing new algorithmic problems. For example, one can
show that scheduling heterogeneous multiprocessors
is not only a different but an algorithmically more
challenging problem than scheduling in homogeneous
systems [10]. Another very interesting challenge is
to take into account the variable and non-negligible
costs of transmodal migration (see Section 3.2). Due
to the more complex migration process, these costs
can make up a significant portion of the scheduling
costs. As an example, consider the migration from a
software thread on the CPU to an FPGA, which not
only involves storing and loading of thread contexts
but also reprogramming of the FPGA.

3.2.Challenge 2: Transmodal migration

Numerous studies have shown that the use of
heterogeneous computing resources can significantly
improve the performance or energy-efficiency of com-
puters. Hence, heterogeneous computing resources are
increasingly deployed in compute centers. In current
operating systems, the management of heterogeneous
resources is static and controlled by the application.
That is, the applications either assume or detect the
presence of a particular computing resource type and

use this resource exclusively during their execution.
From the OTF compute center provider’s perspective,
this static, exclusive and application-controlled bind-
ing of tasks and heterogeneous resources can result
in suboptimal behavior. For examples, tasks may be
blocked while waiting for a currently unavailable het-
erogeneous resource. Also, if functionally equivalent
implementations for different heterogeneous comput-
ing resources are available, migrating computations
between different resource may be beneficial from
a performance, energy-efficiency, cost, or utilization
point of view. While migrating computations between
computing resources is considered state-of-the-art if
the resources are homogeneous instruction set archi-
tectures, moving tasks at runtime between different re-
source types is an open research question. In particular,
moving tasks between instruction set architectures such
as CPUs and non-instruction-based accelerators such
as FPGAs, which we denote as transmodal migration,
is an open research problem since the architectures
use completely different execution models and context
representations.

Basics of Transmodal Migrations. The preemp-
tion and migration of tasks across the hard-
ware/software boundary was investigated, for example,
by Götz et al. [11]. They proposed a framework that
generates templates for hardware and software tasks
based on a task structure description. These templates
are then filled out by the task designer, including
a specification of viable migration points. Migno-
let et al. [12] implemented a comparable thread mi-
gration technique by integrating checkpoints at which
task interruption and context transfer is possible. They
generate both hardware and software task represen-
tations from the same description and map inter-
task communication to a message-passing mechanism.
Koch et al. [13] modeled the migration of finite state
machine-based hardware tasks to software and vice
versa on predefined morph points, where equivalent
context representations exist in hardware and soft-
ware together with a mapping morph function. They
automatically insert the state access logic necessary
to access a hardware task’s state by a custom tool
chain. A formal investigation of hardware/software
state equivalence, motivated by the migration of ap-
plications between software and FPGAs, was pre-
sented by Blumer et al. [14]. The authors developed
a taxonomy of migration realms consisting of pro-
cessors modeled as finite state machines and describe
the migration of processes within a migration realm.
Pellizzoni and Caccamo [15] proposed a real-time

computing architecture that supports quality-of-service
(QoS) adaptation on a hybrid CPU/FPGA system fea-
turing seamless migration of (periodic) tasks between
hardware and software. A hardware task runs for the
entirety of its period. Thus, at most one task at a
time is allocated to a hardware region. Since there is
no support for task preemption, migration can occur
only at the start of a period. Additionally, a task exists
in multiple configurations (variants) for different QoS
constraints, typically a software version and several
differently optimized hardware implementations. Tasks
are migrated in response to newly arriving tasks,
changing QoS constraints, or differing workloads.

Related work on transmodal migration has demon-
strated basic migration techniques using rather simple
case studies. It is not obvious how well the presented
approaches will scale for larger application scenar-
ios. Furthermore, related work has not tackled the
integration of migration techniques into programming
models or the operating system level, e.g., by extending
standard Linux.

Relevant Programming Models for OTF Compute
Centers. In our research we are studying how new pro-
gramming models or specializations of current models
can support transmodal migration and how we can
exploit transmodal migration to optimize the operation
of the compute center. We will base our work on
ReconOS [16], our own multithreaded programming
model and execution environment for software and
reconfigurable hardware. ReconOS promotes passive
hardware accelerators, which are fully controlled by
software, to active so-called hardware threads, which
can independently initiate operating system (OS) calls,
access shared memory, synchronize and communicate
with other threads in the system. Hardware threads
are configured into specific reconfigurable areas on the
FPGA and can be replaced by other hardware threads
over time. A hardware thread is partitioned into three
components: (highly-parallel) user logic, an operating
system synchronization state machine (OSFSM), and, a
local memory. The user logic comprises the accelerator
data paths of the thread and implements the main
computations. The OSFSM controls the accelerator’s
data paths using handshake signals and provides access
to shared resources such as the main memory, message
boxes, and, semaphores using dedicated library func-
tions. The local memory buffers data blocks for an
efficient processing.

The hardware thread is connected to a master CPU
using an operating system interface (OSIF). Software

Figure 3. ReconOS architecture with one master
CPU, one worker CPU and two reconfigurable
hardware slots.

delegate threads represent the hardware threads on
the master CPU, which hosts a monolithic operating
system such as Linux. Whenever a hardware thread
performs an operating system call, the command and
the parameters are forwarded to the corresponding
delegate, which carries out the system call on behalf
of the hardware thread. The OSFSM of the hardware
thread is blocked until the delegate returns the result
of the OS call. Software threads being executed on
worker processors can access the operating system in
a similar manner with the difference that the thread
does not have to be partitioned into multiple parts.
Due to the delegate approach the thread modality is
fully transparent to the host operating system, i.e.,
the host OS does not need to know whether a thread
is executed on the master CPU, a worker CPU or
in a reconfigurable hardware slot. Memory read and
write operations are handled transparently using a ded-
icated memory subsystem. Depending on the host OS
ReconOS also supports virtual memory for hardware
threads, see [17]. Figure 3 depicts the architecture of
a ReconOS systems with two CPUs and two reconfig-
urable hardware slots.

To optimally utilize the reconfigurable hardware
accelerators, ReconOS supports hardware multitasking
using a cooperative approach, see [18]. The operating
system and the hardware threads work together in order
to find adequate preemption points, where the thread

context is well-defined and minimal, and in order to
transfer the thread context. By applying cooperative
multitasking, the overhead in FPGA logic is drastically
reduced compared to a system applying preemptive
hardware multitasking. Cooperative multitasking can
be seen as a compromise between non-preemptive and
preemptive multitasking allowing for infrequent thread
preemptions at the cost of an acceptable hardware over-
head. In ReconOS, the preemption points are usually
combined with OS calls where the hardware thread is
blocked.

Current Research. Our current research focus is set
on the transmodal thread migration between software
and hardware threads. Transmodal thread migration
between CPUs and hardware slots impose many chal-
lenges. The toughest challenge is the translation of
the context from software to hardware, or vice versa.
As one possibility to allow for transmodal thread
migration we will extend the cooperative multitasking
approach from hardware threads to hybrid threads,
which can be executed in hardware and in software.
As a first approach, we will rely on migration points
that are defined and programmed by the application
designer manually. Then, we will investigate if such
migration points can be automatically extracted from
high-level descriptions such as Kahn process networks
or synchronous data flow graphs. We intend to ex-
perimentally demonstrate our transmodal migration
techniques using a multithreaded video object track-
ing case study, which has already been investigated
for performance management in previous work [19].
Finally, ReconOS which was initially developed for
managing hybrid multi-cores in embedded system-on-
chips (SoCs) will be adapted to heterogeneous high-
performance compute nodes. Such nodes comprise
a high-end multi-core processor and several FPGA
accelerator cards and will be typical for OTF computer
centers.

3.3.Challenge 3: Just-in-time acceleration

Transmodal migration assumes that tasks are avail-
able in functionally equivalent implementations for
different resource types. Depending on the scenario,
this may not be a valid assumption. For example,
certain software components may be available only in
binary form for a specific resource type. In other cases,
the source code for the component may be available,
but only for one particular resource type. The OTF
compute center provider however still has an strong

incentive to use the available heterogeneous compute
resources to increase resource utilization and to profit
from performance and energy efficiency benefits of
heterogeneous computing, which can reach up to sev-
eral orders of magnitude, see for example [20], [21].

Basics of Just-in-time acceleration. We aim at solv-
ing this challenge by using just-in-time (JIT) compi-
lation techniques, which analyze binary applications
during execution, identify the runtime intensive parts
(hotspots), and translate these hotspots to specifica-
tions for application-specific accelerators implemented
on heterogeneous resources. Depending on the bi-
nary format, decompilation techniques are required to
reconstruct high-level program information from the
executable application. While just-in-time compilation
and binary optimization methods have worked for
instruction set processors, the application of this idea
to the domain customizable accelerators, in particular,
FPGAs is a novel and ambitious idea. While the
general feasibility of translating software binaries to
circuits, denoted as binary synthesis, has been demon-
strated [22], [23], the application of these methods
during runtime has so far only be rudimentarily studied
for restricted embedded systems. Seminal work in this
area has been conducted by Vahid, Stitt and Lysecky
[24], [25]. These works are restricted to very sim-
ple applications that can be accelerated with custom
instructions. Further, a custom system-on-chip (SoC)
system comprising a purely combinational FPGA ar-
chitecture is assumed as target platform. While these
works rely on costly decompilation methods to recon-
struct the application’s structure, Bispo and Cardoso
study in recent work [26], whether this information
can also be extracted from monitoring the instruction
trace. They also consider an embedded SoC system,
but assume that the accelerator is mapped to a coarse-
grained reconfigurable array. In contrast to Vahid et
al., Bispo and Cardoso also consider the acceleration
of complicated loop structures, which is a precondi-
tion for fully exploiting the potential of FPGAs. The
works of Clark et al. put the emphasis less on the
practical implementation, but on the exploration of the
design space for systems with just-in-time hardware
acceleration. They primarily focussed on CPUs with
reconfigurable instruction sets [27], in later work they
also studied programmable loop accelerators [28].

While related work has proven the general feasibil-
ity of the approach for embedded systems with custom
SoC architectures it is an open research question,
whether the approach is viable in a compute center
context, which relies on high-performance computer

What accelerator size should be provided?

  conclusions
  distinct threshold behavior (whole kernel must fit to exploit performance)
  modest accelerator sizes will be sufficient

25

 1
 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 1.45

2 4 8 16 32 64 128 256 512 1024 2048

Sp
ee

du
p

Accelerator size

AVG13
String
Whet

FFT
SHA
Blow

MD5
JPEG

Figure 4. Evaluation of the achievable speedup for
a reconfigurable accelerator as a function of the
maximum capacity of the accelerator for different
benchmarks (AVG13 is the average over all 13
benchmarks.)

architectures, commercially available heterogeneous
accelerators, and server operating systems. Hence, the
objective of our research is to study the potential
and the fundamental and practical limitations of the
approach in the OTF compute center context.

In our previous work [29], we have studied under
what conditions the time overhead of just-in-time gen-
eration of FPGA accelerators can be amortized when
targeting a reconfigurable instruction set processor im-
plemented with current off-the-shelve FPGA technol-
ogy and standard tool flows. Our studies have revealed
a strong dependence on the kind of applications. For
comparatively simple and regular applications from
the embedded computing domain, the time overhead
will be amortized on average after the application has
been executed for two hours, due to the high average
acceleration factor obtained for this application class.
After this time, the execution of the application on
the FPGA accelerator will result in a net performance
benefit over the execution on the CPUs. For general
purpose applications we have found that the custom
instruction approach is too limiting, since it results in
rather low acceleration, which increases the time until
the overheads have been amortized to many hours or
even days. This may still be practical for jobs in the
OTF compute centers that are long-running or executed
over and over again, but it limits the applicability of
the approach.

Current Research. Currently, we are developing
methods that allow us to estimate the achievable per-
formance when offloading computations to heteroge-
neous computing resources. To this end, we build on
our previous work [30] that uses a combination of
analytical models (for modeling the latency and band-
widths between CPU and the heterogeneous computing
resources), static and dynamic program analysis (for
modeling the control and data flow in the application),
and design space exploration for CPU/accelerator par-
titioning (for determining the optimal distribution of
functionality between different computing resources).
This evaluation infrastructure will allow us to explore
the acceleration potential for a given application and
concrete system parameters. Further, it will enable us
to explore effect of computer system parameters, such
as memory latencies or I/O bus bandwidths, to design
computer systems with accelerators, to extrapolate
the performance of future computing system, and to
understand the sensitivity of these parameters.

Figure 4 shows an exemplary result from such an
evaluation. In this simulation, we have studied the
impact of limited hardware accelerator resources on the
speedup, which was limited to a factor of 2 in this ex-
periment. We can observe a distinct saturation behavior
in the speedup for all applications. If the capacity of
the accelerator is below a benchmark-specific threshold
no speedups can be obtained because the performance-
critical hotspots do not fit to the accelerator. If the
capacity exceeds this threshold the speedups quickly
reach a plateau, where further increasing the capacity
does not lead to higher speedups.

4. Conclusion

In this paper we have introduced “On-The-Fly
Computing”, our vision of future IT services which
is investigated in a large-scale research project at the
University of Paderborn. The OTF computing vision
poses a number of different challenges and requires
not only a large but also a multi-disciplinary team of
researchers to work on it. We have briefly pointed out
the involved disciplines from computer science and
economics and the main working areas. The second
part of the paper has then focused on OTF com-
puter centers. OTF compute centers will be pivotal
for the OTF computing scenario since they finally
execute the assembled software compositions under
dynamically agreed on service level agreements. We
have discussed three challenges for OTF compute cen-
ters, novel scheduling techniques for energy-efficiency,

transmodal migration of functions across the soft-
ware/hardware boundary to optimize energy-efficiency
or performance and, finally, just-in-time acceleration
techniques that make code available only in binary
form or only for specific resource types amenable to
acceleration on heterogeneous compute nodes.

References

[1] L. A. Barroso, “The price of performance,” ACM
Queue, vol. 3, no. 7, pp. 48–53, 2005.

[2] S. Albers, “Energy-efficient algorithms,” Communica-
tions of the ACM, vol. 53, no. 5, pp. 86–96, 2010.

[3] F. F. Yao, A. J. Demers, and S. Shenker, “A scheduling
model for reduced cpu energy,” in Proceedings of the
36th Annual Symposium on Foundations of Computer
Science (FOCS), 1995, pp. 374–382.

[4] T. Mudge, “Power: A first-class architectural design
constraint,” IEEE Computer, vol. 34, pp. 52–58, 2001.

[5] N. Bansal, T. Kimbrel, and K. Pruhs, “Speed scaling
to manage energy and temperature,” Journal of the
ACM, vol. 54, no. 1, pp. 1–39, 2007.

[6] S. Albers, “Algorithms for dynamic speed scaling,”
in Proc. Int. Symp. on Theoretical Aspects of Com-
puter Science (STACS), ser. Leibniz International Pro-
ceedings in Informatics (LIPIcs), T. Schwentick and
C. Dürr, Eds., vol. 9. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011, pp.
1–11.

[7] A. Cord-Landwehr, P. Kling, and F. Mallmann-Trenn,
“Slow down & sleep for profit in online dead-
line scheduling,” in Proc. Mediterranean Conf.erence
on Algorithms (MedAlg), ser. LNCS, G. Even and
D. Rawitz, Eds., vol. 7659. Springer, 2012, pp. 218–
231.

[8] H.-L. Chan, T.-W. Lam, and R. Li, “Tradeoff between
energy and throughput for online deadline schedul-
ing,” in Proc. Int. Workshop on Approximation and
Online Algorithms (WAOA). Springer, 2010, pp. 59–
70.

[9] A. Gupta, R. Krishnaswamy, and K. Pruhs, “Online
primal-dual for non-linear optimization with applica-
tions to speed scaling,” in Proc. Workshop on Approx-
imation and Online Algorithms (WAOA), 2012.

[10] A. Gupta, S. Im, R. Krishnaswamy, B. Moseley, and
K. Pruhs, “Scheduling heterogeneous processors isn’t
as easy as you think,” in Proc. ACM-SIAM Symp. on
Discrete Algorithms (SODA). SIAM, 2012, pp. 1242–
1253.

[11] M. Götz, F. Dittmann, and T. Xie, “Dynamic reloca-
tion of hybrid tasks: Strategies and methodologies,”
Microprocessors and Microsystems, vol. 33, no. 1, pp.
81 – 90, 2009.

[12] J.-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Ver-
nalde, and R. Lauwereins, “Infrastructure for Design
and Management of Relocatable Tasks in a Hetero-
geneous Reconfigurable System-On-Chip,” in Proc.
Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2003, pp. 986 – 991.

[13] D. Koch, C. Haubelt, T. Streichert, and J. Teich, “Mod-
eling and synthesis of hardware-software morphing,”
in ISCAS. IEEE, 2007, pp. 2746–2749.

[14] A. D. Blumer, H. S. Mortveit, and C. D. Patterson,
“Formal modeling of process migration,” in Proc. Int.
Conf. on Field Programmable Logic and Applications
(FPL), 2007, pp. 104–110.

[15] R. Pellizzoni and M. Caccamo, “Hybrid hardware-
software architecture for reconfigurable real-time sys-
tems,” in Proc. of IEEE Real-Time and Embedded
Technology and Applications Symp., 2008.

[16] E. Lübbers and M. Platzner, “ReconOS: Multi-
threaded Programming for Reconfigurable Comput-
ers,” ACM Transactions on Embedded Computing Sys-
tems (TECS), vol. 9, no. 1, October 2009.

[17] A. Agne, E. Lübbers, and M. Platzner, “Memory
virtualization for multithreaded reconfigurable hard-
ware,” in Int. Conf. on Field Programmable Logic and
Applications (FPL). IEEE, 2011.

[18] E. Lübbers and M. Platzner, “Cooperative Multi-
threading in Dynamically Reconfigurable Systems,” in
IEEE Int. Conf. on Field Programmable Logic and
Applications (FPL). IEEE, 2009.

[19] M. Happe, E. Lübbers, and M. Platzner, “A Self-
adaptive Heterogeneous Multi-core Architecture for
Embedded Real-time Video Object Tracking,” Journal
of Real-Time Image Processing, pp. 1–16, 2011.

[20] M. B. Gokhale and P. S. Graham, Reconfigurable
Computing: Accelerating Computation with Field-
Programmable Gate Arrays. Springer, 2005.

[21] W. mei W. Hwu, GPU Computing Gems Emerald
Edition, 1st ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2011.

[22] G. Mittal, D. Zaretsky, X. Tang, and P. Banerjee,
“An overview of a compiler for mapping software
binaries to hardware,” IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, vol. 15, no. 11, pp.
1177–1190, Nov. 2007.

[23] G. Stitt and F. Vahid, “Binary synthesis,” ACM Trans.
on Design Automation of Electronic Systems, vol. 12,
no. 3, pp. 1–30, 2007.

[24] F. Vahid, G. Stitt, and R. Lysecky, “Warp processing:
Dynamic translation of binaries to FPGA circuits,”
IEEE Computer, vol. 41, no. 7, pp. 40–46, Jul. 2008.

[25] R. Lysecky and F. Vahid, “Design and implementation
of a MicroBlaze-based processor,” ACM Trans. on
Embedded Computing Systems, vol. 8, no. 3, pp. 1–22,
2009.

[26] J. Bispo and J. M. P. Cardoso, “On identifying and
optimizing instruction sequences for dynamic compi-
lation,” in Int. Conf. on Field Programmable Technol-
ogy (ICFPT). IEEE Computer Society, Dec. 2010,
pp. 437–440.

[27] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and
K. Flautner, “An architecture framework for transpar-
ent instruction set customization in embedded proces-
sors,” in Proc. Int. Symp. on Computer Architecture
(ISCA). Washington, DC, USA: IEEE Computer
Society, 2005, pp. 272–283.

[28] N. Clark, A. Hormati, and S. Mahlke, “VEAL: Vir-
tualized execution accelerator for loops,” in Proc. Int.
Symp. on Computer Architecture (ISCA). Washington,
DC, USA: IEEE Computer Society, 2008, pp. 389–
400.

[29] M. Grad and C. Plessl, “On the feasibility and lim-
itations of just-in-time instruction set extension for
FPGA-based reconfigurable processors,” Int. Journal
of Reconfigurable Computing (IJRC), 2012.

[30] T. Kenter, M. Platzner, C. Plessl, and M. Kauschke,
“Performance estimation framework for automated
exploration of CPU-accelerator architectures,” in Proc.
Int. Symp. on Field-Programmable Gate Arrays
(FPGA). New York, NY, USA: ACM, Feb. 2011,
pp. 177–180.

	Introduction
	Vision and Goals of OTF Computing
	On-The-Fly Compute Centers
	Challenge 1: Efficient usage of energy in future data centers
	Challenge 2: Transmodal migration
	Challenge 3: Just-in-time acceleration

	Conclusion
	References

