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Abstract Sequential Monte Carlo (SMC) represents a

principal statistical method for tracking objects in video

sequences by on-line estimation of the state of a non-linear

dynamic system. The performance of individual stages of

the SMC algorithm is usually data-dependent, making the

prediction of the performance of a real-time capable system

difficult and often leading to grossly overestimated and

inefficient system designs. Also, the considerable compu-

tational complexity is a major obstacle when implementing

SMC methods on purely CPU-based resource constrained

embedded systems. In contrast, heterogeneous multi-cores

present a more suitable implementation platform. We use

hybrid CPU/FPGA systems, as they can efficiently execute

both the control-centric sequential as well as the data-

parallel parts of an SMC application. However, even with

hybrid CPU/FPGA platforms, determining the optimal

HW/SW partitioning is challenging in general, and even

impossible with a design time approach. Thus, we need

self-adaptive architectures and system software layers that

are able to react autonomously to varying workloads and

changing input data while preserving real-time constraints

and area efficiency. In this article, we present a video

tracking application modeled on top of a framework for

implementing SMC methods on CPU/FPGA-based systems

such as modern platform FPGAs. Based on a multithreaded

programming model, our framework allows for an easy

design space exploration with respect to the HW/SW par-

titioning. Additionally, the application can adaptively

switch between several partitionings during run-time to

react to changing input data and performance requirements.

Our system utilizes two variants of a add/remove self-

adaptation technique for task partitioning inside this

framework that achieve soft real-time behavior while try-

ing to minimize the number of active cores. To evaluate its

performance and area requirements, we demonstrate the

application and the framework on a real-life video tracking

case study and show that partial reconfiguration can be

effectively and transparently used for realizing adaptive

real-time HW/SW systems.
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1 Introduction

Real-time video object tracking has important applications

in areas as diverse as aircraft and missile tracking, pedes-

trian surveillance, athlete tracking and industrial vision

systems. Some of these systems have to deal with the

problem of determining the current position of an object

with non-linear movement across sequential video frames.

Therefore, they need to employ sophisticated methods to

continuously extract a reasonable estimate of the object’s

location during run-time.

A popular class of state estimation algorithms is repre-

sented by Sequential Monte Carlo (SMC) methods. These

iterative statistical methods, also denoted as particle filters,
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have already found widespread adoption in various com-

puting contexts. As they are often employed to estimate

physical systems, many embedded applications benefit from

a particle filter’s capability to track non-linear systems, as

opposed to Kalman filters [12]. For example, Woelk et al.

[27] perform outdoor tracking of athletes using a mobile

helicopter and an SMC-based tracking system.

Despite their divergent application areas, all SMC

methods follow the same fundamental algorithmic struc-

ture and thus share significant portions of common func-

tionality. They track a number of possible state estimates,

the particles, over time. These particles are continuously

compared to measurements to determine the accuracy of

the individual state estimates, and weighed accordingly.

Usually, the quality of the state estimation can be improved

by increasing the number of particles.

Real-time video object tracking is usually performed in

resource-constrained embedded systems. In such systems,

the considerable computational complexity associated with

tracking a large number of estimates about the object’s

current position is challenging. Typically, the accuracy of

object tracking increases dramatically with the number of

particles and it is thus tightly connected to the computa-

tional capabilities of the targeted platform. However, being

an on-line estimation scheme, the quality of an SMC sys-

tem’s tracking results depends not only on their accuracy,

but also on their timeliness. Thus, meeting real-time con-

straints constitutes a high-design priority of embedded

particle filters.

Since particles tracked by SMC methods are indepen-

dent, many of the involved data-centric calculations can be

parallelized and they are, additionally, amenable to

implementation in dedicated hardware. At the same time,

the sequential algorithm controlling these computations is

implemented more efficiently using a general-purpose

CPU. This composite nature of particle filters makes them

a perfect fit for hybrid CPU/FPGA architectures, such as

modern platform FPGAs. More specifically, a heteroge-

neous multi-core system that provides multiple execution

environments including both dedicated hardware circuits

and general purpose CPUs, which offers a great potential to

meet the specific demands of particle filters while achiev-

ing high performance. At the same time, such heteroge-

neous multi-core systems increase the complexity of

performance estimation and require efficient and flexible

mechanisms for design space exploration.

Since the computational requirements for the individual

parts of video object tracking often vary or are input data-

dependent, the optimal distribution of tasks between cus-

tom hardware cores and software processors at different

cost/performance/energy design points can change dra-

matically between implementations and also during run-

time. For instance, in histogram-based video object

tracking systems the object size strongly influences the

computational complexity. Thus, many real-time video

tracking systems track fixed sized objects. When consid-

ering self-adaptive heterogeneous multi-core systems,

however, we can allow changing object sizes by activating

or deactivating cores. Deactivating cores with low utiliza-

tion helps to reduce the power consumption of the system.

Hence, cost-efficient real-time video object tracking sys-

tems require mechanisms of adapting their architecture

during run-time. This new requirement of self-adaptability

asks for the development of flexible system architectures

capable of dynamically reconfiguring their processing

elements and distributing tasks among them, which again

makes reconfigurable technology such as FPGAs a prime

implementation target for both flexible design space

exploration and run-time adaptability.

Thus, in summary, a design environment must fulfill the

following requirements to effectively promote the efficient

use of SMC-based algorithms in real-time video object

tracking systems:

– provide a common SMC architecture for rapid devel-

opment of particle filters from various application

areas,

– combine efficient software and custom hardware exe-

cution cores for both sequential and data-parallel

implementations of the individual parts of a particle

filter,

– allow flexible HW/SW re-partitioning at design time to

custom-fit an application to its targeted domain,

– facilitate run-time HW/SW re-partitioning to adapt to

changing video data characteristics and meet real-time

constraints while preserving implementation efficiency.

The main contribution of this article is a common and

flexible design environment for real-time video object

tracking applications targeted at hybrid CPU/FPGA plat-

forms. We have developed a self-adaptive, multithreaded

framework that directly exploits the dynamic reconfigura-

tion capabilities of modern platform FPGAs and signifi-

cantly simplifies the design of particle filters following the

sampling importance resampling (SIR) algorithm. Utilizing

our multithreaded reconfigurable operating system Reco-

nOS, developed by Lübbers and Platzner [16], the frame-

work handles all recurring tasks such as particle data

transfer and thread control, letting the designer to focus on

the application-specific details of an individual particle

filter. Since the operating system transparently supports

both software and hardware threads using one unifying

programming model, the designer can quickly create dif-

ferent HW/ SW partitionings to evaluate their performance

and react to changing application and performance

requirements. During run-time, the framework also supports

on-line task re-partitioning using partial reconfiguration.
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This article summarizes and extends the work presented

by Happe et al. [8, 9]. New aspects are (1) the integration of

worker CPUs to form heterogeneous multi-core systems, (2)

two self-adaptation techniques for real-time HW/SW rep-

artitioning and (3) new experimental results. As a case study,

we leverage the video object tracking system presented by

Happe et al. [9] and advance it to utilize multiple processors

and hardware cores. Our novel self-adaptation techniques

successfully re-partition threads onto different cores and

even across the HW/SW boundary to keep the performance

of a video object tracking application above a user-defined

bound or within a user-defined performance budget.

The article is structured as follows: Sect. 2 outlines the

related work on real-time video object tracking and self-

adaptation in heterogeneous multi-core platforms. Fur-

thermore, it provides a background on SMC methods and

introduces the employed multithreaded programming

environment that was specifically designed for CPU/FPGA

systems. Section 3 describes the components and design

approach of our self-adaptive multithreaded framework

which can be used to design any kind of particle filter

applications. Thus, the framework is not restricted to be

applied in video object tracking applications. The novel

self-adaptive add/remove strategies are presented in

Sect. 4. A case study application for video object tracking

is introduced together with its system model, experimental

results from prototype implementations with static and

self-adaptive heterogeneous multi-core systems in Sect. 5.

Finally, Sect. 6 concludes the article and gives an outlook

on our ongoing and future work.

2 Background and related work

In this section, we present releated work on real-time video

object tracking systems, in Sect. 2.1, and related work on

self-adaptation in heterogeneous multi-core platforms, in

Sect. 2.2. Section 2.3 introduces ReconOS, a common

multithreaded programming environment of CPU/FPGA

systems, which was used to implement our heterogeneous

multi-core architecture. Finally, we present background

and releated work on SMC methods, in Sect. 2.4.

2.1 Real-time video object tracking

Object tracking is among the computationally most inten-

sive image processing tasks [18]. In various application

areas, it has to adhere to real-time constraints.For instance,

Gilbert et al. [7] designed a real-time video object tracking

system that identifies and tracks missiles and aircraft using

adaptive and statistical clustering and a project-based

classification algorithm for military use. Other scenarios

include the observation of pedestrians. Loza et al. [15]

compared the combinational approaches to a particle filter

for multiple target video object tracking in the scenario of

tracking pedestrians in a public area. Their experiments

show that particle filters are more accurate while combi-

national approaches achieve a higher performance, but

require well-separated objects.

Kobayashi et al. [13] used particle swarm optimization

to track a green ball in a video with the frame size of

640 9 480 and a target object size between 1 and 30 pixels

at 25 frames per second (FPS) using 100 particles. Cho

et al. [4] stated that pattern matching requires expensive

computation power and it is a bottleneck to meet real-time

constraints. Thus, they developed a hardware circuit that

tracks an object by computing the color histogram for a

15 9 15 sample window for each possible position. The

architecture was implemented on a Virtex-4 XC4VLX200

FPGA and achieves 81 FPS for frames at VGA resolution.

However, the object size is limited and cannot be adapted

at run-time. Ali et al. [1] implemented a kernel-based mean

shift tracking algorithm on a MicroBlaze processor and

connected it to hardware components for frame grabbing

and display. The system tracks an object of size 32 9 32 at

25 FPS using color histograms for videos with the size

360 9 288, where the processor is clocked at 50 MHz and

the histogram is constrained to two color components.

Visentini et al. [26] proposed a cascaded version of an

online boosting algorithm that self-adapts the number of

levels and, thus, the shape of the cascade at run-time to

achieve real-time. As classifiers they used Haar features,

local bin patterns and color histograms. They were able to

achieve 25 FPS on an AMD Athlon 64 3500? with 1 GB

RAM, but they were restricted to a fixed sized object size.

Here, the varying computational complexity results from

the tracking confidence of the three cascade ensembles.

Similar to some related work, we use a particle filter in

combination with color histograms for object tracking.

However, in most real-time systems the target object size is

fixed. Our real-time system, instead, uses a reconfigurable

heterogeneous multi-core architecture, which can handle

changing target object sizes and, thus, changing computa-

tional complexity by self-adaptation.

2.2 Self-adaptation in heterogeneous multi-core

systems

In recent years, thread-level adaptability of embedded

devices in both microprocessor and reconfigurable hard-

ware contexts has been investigated from different angles.

For example, Kumar et al. [14] argued that for many

applications, core diversity is more important than unifor-

mity to better adapt to the changing demands of applica-

tions. The authors designed and simulated a heterogeneous

multiprocessor system where the processors show different
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power/performance characteristics. During the applica-

tion’s execution, the system software selects the most

appropriate core that saves the most energy while still

achieving a specified performance. For 14 SPEC bench-

marks, they achieved an average energy saving of 39%

with a performance loss of 3%.

Curtis-Maury et al. [5] recognized that threads targeted

at complex multi-core systems interact in a complex and

data-dependent manner and proposed to adapt the thread/

core distribution based on run-time thread execution pro-

files. They developed a multithreading library for power/

performance adaptation and evaluated their approach on

OpenMP-based applications running on a symmetric multi-

core system without heterogeneous hardware cores.

In the field of dynamic task mapping in FPGA-based

systems, Stitt et al. [25] proposed dynamically partitioning

applications between software processors and hardware

co-processors, where co-processors are generated at run-

time using binary decompilation and synthesis. Huang and

Vahid [11] showed that the dynamic co-processor man-

agement can be reduced to the metrical task system prob-

lem and presented a fading cumulative benefit (CBF)

heuristic. The heuristic stores the theoretically achievable

cumulative benefit for each application that could have

been achieved by using a co-processor. The CBF values are

fading in order to focus on temporal locality. Sigdel et al.

[21] introduced a two-level design space exploration to

solve the dynamic task mapping problem. At design time,

the first-level DES explores the system under static

conditions to find the optimal static task partitioning. At

run-time, the second-level DES seeks to optimize the task

mapping to adapt changes in the application, architecture

or the environment. Similar to both approaches, we map

tasks to processors and reconfigurable logic. In contrast to

Vahid et al., who generates hardware co-processors from

parallelizable code, we map entire threads (including OS

calls) into hardware. While most approaches try to maxi-

mize the performance, we aim to achieve a desired per-

formance while minimizing the number of active cores.

Considering more heterogeneous systems that also con-

sider DSPs, ASICs, etc, Smit et al. [23] proposed two heu-

ristics which minimize the energy consumption: the adapted

minWeight heuristic and the more advanced hierarchical

iterative heuristic [24]. Moreover, several heuristics for

NoC-based systems were published, i.e., Nollet et al. [17];

Carvalho et al. [3]. Nollet et al. [17] improved the task

assignment success rate by dynamic instantiation of softcore

processors that allow tasks, which do not have a hardware

implementation, to be mapped to the FPGA fabric. In con-

trast to our work, these approaches either focus on energy

consumption or on the specifics of NoC-based architectures.

Finally, Sironi et al. [22] proposed a self-aware FPGA-

based system where the applications performance can be

constrained into an interval. The application’s performance

is monitored using the Heartbeat Application, where an

application sends a heart beat to a framework at specific

points in time. The Heartbeats framework observes if the

measured heart rate is inside a user-defined performance

budget and controls re-partitioning. In contrast to our work,

the work of Sironi et al. does not provide any concrete re-

partitioning heuristics or dynamic measurements.

2.3 Multithreaded programming of CPU/FPGA

systems

Multithreaded programming is a popular means to

decompose an application into individual threads of exe-

cution. In this way, the application designer can express an

application’s parallelism using a well-defined program-

ming model consisting of threads, as well as communica-

tion and synchronization primitives. Given a suitable

execution environment, multithreaded programming

enables the system to effectively share computing resour-

ces, as well as transparently take advantage of the appli-

cation’s parallelism. It is supported by most contemporary

operating systems and enjoys widespread use in the soft-

ware domain, both for desktop and high-performance

computing and within the embedded systems.

SMC methods following the SIR approach can be easily

separated into individual threads representing the stages

sampling, importance, and resampling. As the particles are

independent of each other, all stages can be parallelized,

such that multiple threads per stage process a separate group

of particles each. With this decomposition, an SMC appli-

cation can be represented by a collection of partly interde-

pendent, communicating, and synchronizing threads, which

(for the reasons introduced in Sect. 1) execute most effi-

ciently on a hybrid HW/SW execution platform. Thus, a

common multithreaded programming model for hardware

and software threads offers an ideal basis for designing

particle filters on such systems.

The operating system ReconOS [16] extends the multi-

threaded programming model to the domain of reconfigu-

rable hardware. Instead of regarding hardware modules as

passive coprocessors to the system CPU, they are treated as

independent hardware threads on an equal footing with

software threads running in the system. In particular,

ReconOS allows hardware threads to use the same oper-

ating system services for communication and synchroni-

zation as software threads, providing a transparent

programming model across the hardware/software bound-

ary. This transparency makes the design space exploration

regarding the hardware/software partitioning of an appli-

cation a straightforward task and facilitates self-adaptation.

Since all threads use identical programming model primi-

tives such as semaphores, mailboxes or shared memory,
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they do not need to know whether their communication

peers are software threads executed on the CPU or HW

threads mapped to the reconfigurable fabric. Thus, the HW/

SW partitioning of an application can be changed at design

or run-time by simply instantiating the appropriate threads.

ReconOS supports dynamic reconfiguration of hardware

threads by taking advantage of the partial reconfiguration

capabilities of Xilinx FPGAs.

ReconOS builds on top of and extends existing operating

system kernels, such as eCos or Linux, and it is targeted at

platform FPGAs integrating microprocessors and recon-

figurable logic. Figure 1 shows the architecture of a typical

ReconOS system. A master CPU executes the operating

system kernel and manages all interactions between the

individual threads of the application. In addition, it can run

regular software threads using the kernel’s software API.

The reconfigurable area is divided into multiple slots of

arbitrary size and shape. These slots and any additional

microprocessor cores (called worker CPUs) are connected

to the system through a dedicated hardware OS interface

(OSIF). The OSIF also manages the low-level synchroni-

zation and includes the logic necessary for partial run-time

reconfiguration. Hardware threads running in the reconfig-

urable slots (HW Threads), as well as software threads

running on the worker processors (CPU–HW Threads),

route all their operating system interaction requests through

their OSIF, which forwards the requests to a corresponding

delegate thread running on the CPU. This delegate thread

performs all OS interaction on behalf of the HW and CPU–

HW threads. Hence, the operating system can transparently

handle both hardware and software threads running on a

mix of heterogeneous processing elements. This approach

provides maximum transparency and portability and allows

CPUs with different instruction set architectures and binary

formats as well as custom hardware accelerators with

varying design, performance, and implementation costs, to

be integrated into a single execution environment.

ReconOS presents a flexible foundation to design SMC

applications for embedded heterogeneous multi-core sys-

tems. Through the common programming model and the

offered transparency, the particle filter can be transparently

distributed over the heterogeneous processing elements.

Furthermore, thanks to the partial reconfiguration capaci-

ties of ReconOS, hardware and software threads can be

inserted and removed at run-time. Hence, ReconOS pro-

vides a proficient basis to design self-adaptive systems that

change their HW/SW partitioning at run-time to react to

changing workloads.

2.4 Sequential Monte Carlo methods

SMC methods estimate a system state xt at time stage

t using probability distributions. We are considering that

the system state is to be tracked in a dynamic environment

and the initial distribution p(X0) is given, where X0 is a

random variable describing the state at time t = 0. The

system model is a Markov process of first order. Thus, p(Xt|

Xt-1) denotes the probability distribution of the system’s

current state given the system’s previous state. We assume

that the system state is hidden and thus cannot be observed

directly, but can be tracked by measurements yt, which

may be influenced by noise. The relation between mea-

surements and system states is described by the measure-

ment model. The distribution p(Yt = yt|Xt) describes the

probability of the current measurement given the system’s

current state. In other words, we make a statement about

the likelihood of observing a specific measurement, pro-

vided we are in a system state modeled by Xt. The proba-

bility distribution of Xt is approximated by a fixed number

of samples xt
i, also called particles.

Based on the system and measurement models, we are

interested in predicting the current state based on past

measurements, pðXtjy1; . . .; yt�1Þ; or in updating the cur-

rent state prediction based on the latest measurement,

pðXtjy1; . . .; ytÞ: SMC methods approximate these distri-

butions by drawing a large number of samples from them.

However, as these distributions are typically unknown, we

cannot directly draw samples from them. Several tech-

niques have been proposed to circumvent this problem,

among them is importance sampling. When the estimates

for the system state have to be computed on-line while the

state changes, as it is the case for tracking applications, the

sequential importance sampling (SIS) and sequential

importance resampling (SIR) methods can be applied,

which present a recursive approach to approximate the

desired distributions. Our framework closely follows the

SIR algorithm (Algorithm 1) as it is one of the most widely

used SMC methods.

Fig. 1 ReconOS hardware architecture: the operating system and

possibly multiple software threads run on a master processor. Threads

that run on worker cores are represented as delegate threads on the

master processor. In this example of multi-core architecture, one

worker processor and two dynamically reconfigurable hardware slots

are connected to the master processor using a shared bus
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Figure 2 shows one iteration of the sampling–impor-

tance–resampling (SIR) algorithm for SMC methods,

where particles are depicted as circles.

1. Sampling The new particle state ~xi
t is drawn from the

distribution p(Xt|Xt-1 = xt-1
i ). Now, the set of particles

~xi
t forms a prediction of the distribution of Xt.

2. Importance The measurement model is evaluated for

every particle to determine the likelihood that the

current measurement yt matches the predicted state ~xi
t

of the particle. The resulting likelihood is assigned as a

weight wt
i to the particle. In Fig. 2, particles with

higher weights are drawn as larger circles.

3. Resampling Particles with comparatively high-weights

are duplicated and particles with low-weights are

eliminated. The distribution of the resulting particles xt
i

approximates the distribution of the weighted particles

before resampling.

As can be derived from Fig. 2, the SIR algorithm rep-

licates all particles that form a likely prediction of the state

while eliminating particles that do not match well with the

current measurement. This process can be viewed as a filter

that tracks several state hypotheses at once, filtering out

hypotheses that are not supported by the measurements.

After each time stage, the most likely match can be

extracted from the probability distribution approximated by

the particles, e.g., by selecting the particle with maximum

weight or computing the average over all particles.

Algorithm 1 presents the pseudo code of the SIR algo-

rithm for N particles. In lines 2–5, the particles xt
i are first

drawn according to the prediction p(Xt|Xt-1 = xt-1
i ) and then

weighed according to the likelihood p(Yt = yt|Xt = xt
i). As

the particles are independent from each other, the for-loop

can be parallelized. Furthermore, the sampling and impor-

tance stages can be pipelined. For the resampling stage (line

10), the particle weights have to be normalized (lines 6–9).

In most cases, the current state prediction is either the

particle that has the highest weight or the (weighed) average

of all particles.

For a more thorough discussion of the theoretical

foundations of SMC methods we refer to Doucet et al. [6].

The necessity of accelerating particle filter algorithms

with reconfigurable hardware has been addressed by sev-

eral research groups in previous years. Sankaranarayanan

et al. [20] presented a flexible hardware architecture for

SMC methods that uses density sampling techniques from

the more general domain of Monte Carlo Markov chain

algorithms. This allows them to drop the resampling step

which poses scalability and efficiency issues when imple-

mented in hardware. However, the approach does not show

significant improvements in quality over traditional SIR

filters. As we resolve some of the efficiency issues by

implementing the resampling step in software, we chose

not to adapt this method.

Saha et al. [19] presented a parameterizable framework

for the hardware implementation of particle filters, which

bears some similarity to our approach in that it provides an

interface for the model definition of a particle filter.

However, their proposed framework targets a static hard-

ware-only implementation of the filter and thus signifi-

cantly differs from our flexible, multithreaded HW/SW

approach. Furthermore, their static approach does not

support any on-line self-adaptation techniques.

3 Framework

All particle filters using the SIR algorithm rely on the same

underlying algorithmic structure. Hence, a substantial part

of the functionality, code, and—in the case of hybrid CPU/

FPGA systems—hardware circuitry can be re-used sup-

ported by a framework-based design approach. Our particle

filter framework takes care of common tasks shared by all

SIR implementations, such as data transfer and control

flow, and lets the designer focus on the application-specific

tasks, such as system and measurement modeling. The

characteristic feature of our particle filter framework is the

use of multithreaded programming across the hardware/

software boundary. The combination of control-centric and

data-oriented processing inherent in particle filters closely

Fig. 2 Sampling–importance–resampling algorithm: the figure illus-

trates one iteration of the algorithm. Happe et al. [8]
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matches the target platforms and capabilities of our mul-

tithreaded operating system (see Sect. 2.3), which is used

for its implementation.

Figure 3 shows the basic structure of an SIR imple-

mentation using our framework. The particles cycle

through four stages, the three SIR filter stages sampling,

importance, and resampling, and an additional observation

stage. Each of these stages can have an arbitrary number of

software and hardware threads. Based on our experiments

and case study, as outlined in Sect. 5, we expect that in

many applications, determining the importance weight of a

given measurement requires particle-specific preprocessing

of the measurements and involves significant computa-

tional complexity. Since this preprocessing can be done

independently for every particle, we have added an addi-

tional observation stage, again split into an arbitrary

number of hardware and software threads. Our tests show

that this technique significantly improves the performance

of our case studies.

Communication and synchronization between the

threads of different stages is managed primarily using

message box primitives of ReconOS. The execution times

of threads within the stages may vary due to data-depen-

dencies, memory latencies, CPU load, and other factors.

The total number of particles is thus split into chunks of

user-defined size, which form the atomic entries stored in

the message boxes. This enables the framework to balance

the load between the threads of a stage and at the same time

keeps the communication overhead small. As shown in

Fig. 3, a software thread named preSampling precedes

the sampling stage. Using the application-specific

receive_new_measurements function, this thread retrieves

new measurements and prepares the sampling stage by

reassigning the particles to chunks. This is necessary

because the resampling stage of the previous iteration

replicates some particles and deletes others, leaving the

chunks non-uniformly populated with particles.

Before particles can be weighed at the importance stage,

the observation stage extracts an application-specific fea-

ture (the observation) from the measurement for each

particle. Finally, before resampling, the preResam-

pling thread synchronizes the data flow of all particles to

normalize their weights. Additionally, a user-function

iteration_done is executed to take care of application-

specific tasks once per iteration, such as transferring of

estimation results to a display, memory, or I/O, as well as

hardware/software repartitioning of the threads in the filter

stages. The latter is useful when the stage thread’s per-

formance is data-dependent and thus changes during run-

time (see Sect. 5.1).

The particle filter framework provides parallelization

for the sampling, observation, importance, and resampling

stages. The number of hardware and software threads for

each stage can be freely chosen, except that there must be

at least one thread in each stage. Generally, the number of

threads will depend on the availability of computing

resources, i.e., CPU utilization factors and logic area. The

other threads of the framework are mainly control-domi-

nated or show limited potential for parallelism and they

are, therefore, implemented in software. Access to the

needed data, the control flow, as well as necessary

operating system services for communication and syn-

chronization are completely managed by the framework.

The relevant data structures and initial hardware parti-

tioning are determined and initialized by a software

thread, which also set the initial number of threads for

each stage.

To take advantage of the services provided by the

framework, an SMC application designer needs to structure

the application-specific descriptions regarding the sam-

pling, observation, importance, and resampling stages in a

predefined way. For software implementations, the user

simply fleshes out C function templates provided by the

framework, which are linked into the corresponding soft-

ware threads of the filter stages. On the other hand, hard-

ware implementations are structured as shown in Fig. 4

which exemplary depicts the hardware description for the

sampling stage. A hardware implementation of a filter stage

is always split into a framework part and an application-

specific part. On the one hand, the framework part captures

the parts of a filter stage that are identical for different

application areas which include the interaction with the

operating system. On the other hand, the application-spe-

cific part defines the user logic which depends on the

current application and thus has to be provided by the

application designer.

The framework part implements a synchronous state

machine to interact with the operating system. First, the

Fig. 3 Structure of a SIR filter implementation: the stages sampling,

importance, observation, and resampling can be represented by

multiple heterogeneous threads. The particles are partitioned into

chunks which are sent as messages through the four stages. Happe

et al. [9]
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hardware thread is initialized with information about the

particles and the system model that is stored in infor-

mation_struct. It then waits for a message containing

the information which chunk of particles needs to be

sampled. The framework stores as many particles as pos-

sible into the local RAM of the hardware thread before it

informs the user process about the number of available

particles. After the application-specific user process has

predicted the next particle state, it notifies the framework

that the sampling process is completed. The framework

then writes the sampled particles into shared memory and

either loads the next particles of the chunk or forwards the

chunk message to the next stage. The hardware imple-

mentations for the other stages are designed in a similar

way. The particle filter designer has the maximum flexi-

bility to design the user logic for a filter stage after the

framework has read all necessary data from the shared

memory.

4 Real-time self-adaptation strategies

In this section, we present two self-adaptive add/remove

strategies for multithreaded applications on heterogeneous

multi-core systems, such as our video tracking case study.

The two adaptive thread partitioning algorithms, ATPbound

and ATPbudget, aim to satisfy soft real-time constraints

while minimizing the required processing resources. While

ATPbound always tries to keep the system performance

above a lower bound, ATPbudget aims to stay within a

performance budget and attain a predefined average per-

formance, thereby trading lower resource usage for slightly

higher rates of missing the lower performance bound. Both

approaches are well suited to all particle filter applications

and, consequently, supported within our framework to

enable on-line self-adaptation.

For both algorithms, we assume that an instance of each

thread executes on the master processor at all times and

that each worker core is assigned at most one thread

instance in total. Initially, the application with all its

threads executes entirely on the master processor. The

master processor also measures the total application per-

formance at user-defined time intervals.

Formally, we denote the set of threads as T, a distinct

thread as Ti, the set of cores as C, an individual core as Cj

and a specific thread instance executing on a specific core as

Ti,j. Thread instances generally show differing performance

on different heterogeneous cores, i.e., threads with data-

parallel computations can be more efficiently mapped into

reconfigurable logic. Furthermore, general speedup factors

of a heterogeneous core cannot be given for every kind of

task, whereas data-parallel computations can provide good

Fig. 4 Hardware thread for the

sampling stage: the framework

part contains a synchronous

state machine that

communicates with the

operating system, while the

application-specific part

provides the user logic that

samples particles according to

the application’s system model

102 J Real-Time Image Proc (2013) 8:95–110

123



speedups when mapped to reconfigurable logic, sequential

algorithms usually show better performance on processors.

Thus, si,j models the specific speedup of a (worker) core Cj

executing the thread instance of Ti compared with the thread

instance that executes on the master core. Consequently, the

speedup of the thread instance on the master core is 1. We

assume that the workload of thread Ti distributes among the

cores which execute instances of Ti proportionally to their

speedup values si,j. Specifically, if the master core j exe-

cutes a thread instance Ti,j and a worker core j0 executes

another thread instance Ti,j0 with the speedup value

si,j0 = 2, we assume that the master core executes 1
3

of the

entire workload, see Fig. 5.

The main purpose of this assumption is to allow us to

predict the application’s execution time when adding or

removing another thread instance. With ei,master as the

measured fraction of Ti’s execution time on the master

processor under the current partitioning, we can model a

hypothetical execution time (or workload) W(Ti) for a

single-core partitioning which would map Ti only on the

master processor (and no worker cores):

WðTiÞ ¼ ei;master �
X

8j:Ti2AðCjÞ
si;j ¼ ei;master � Si

where, A(Cj) represents the set of thread instances that

execute on core Cj, and Si denotes the estimated cumulated

speedup of thread Ti. Note that since starting or stopping, a

thread instance changes both ei,master and Si, W(Ti) remains

constant regardless of the chosen partitioning. An

additional thread instance Ti,j0 on a free core Cj
0 will lead

to savings in the master processor’s actual execution time

(reward) for that thread of

rewardi;j0 ¼ ei;master

si;j0

Si þ si;j0

Similarly, terminating a thread instance Ti,j’ on a worker

core Cj
0 will lead to a likewise increase in the master

processor’s actual execution time (penalty) for that thread

of

penaltyi;j0 ¼ ei;master

si;j0

Si � si;j0

The resulting system performances are denoted as

preward and ppenalty, respectively.

4.1 ATPbound algorithm

Algorithm 2 presents the pseudo code for our bound-based

add/remove self-adaptation technique ATPbound. The

algorithm executes in user-defined time intervals and re-

partitions the system if the application’s current perfor-

mance p is below or above the user-defined performance

bound P by either calling add_core() or remove_-

core(). The repartitioning is achieved by reconfigura-

tion/release of a hardware slot (for hardware threads) or the

activation/deactivation of a worker processor (for software

threads). In case the performance is below the bound, the

master creates an additional instance of the thread on the

core that promises the largest increase in performance. If

the performance exceeds the bound P; the master termi-

nates the instance of the thread that will free a core, but

keep the application performance above P; if such a thread

exists.

In lines 9–17 of Algorithm 2, the function

add_core()computes for all threads Ti 2 T the possible

rewards in execution time rewardi,j0 in case an additional

thread instance is started on an idle core. The function only

considers idling worker cores (line 11). With A(Cj) as the

set of thread instances that execute on core Cj, an idling

core is characterized by A(Cj) = [. For other cores, the

reward is set to 0, in line 14. Then, in line 18, the function

selects the thread instance Ti,j that maximizes the estimated

performance. Therefore, we estimate the performance

prewardi;j
assuming that the execution time of the thread

instances running on the master core can be reduced by

rewardi,j. In case of several threads promising the same

performance, we break ties by randomly choosing a thread.

Finally, in lines 19–22, we create a new thread instance

Ti0,j0 and update the cumulated estimated speedup Si0 and

A(Cj’). When there is no idling worker core, the maximum

achievable reward is 0. In this case, the current partitioning

remains unchanged.

The function remove_core(), in lines 24–39, oper-

ates in a similar way. We terminate the thread instance

Ti,j that promises the lowest increase in execution time

(penalty). We do not deactivate a core, if the estimated

Fig. 5 The first partitioning shows the scenario where all work

packages are computed by the master j. In contrast, the second

partitioning shows the case where the worker j0 with si,j0 = 2

computes 2
3

of the workload of T1 and reduces the execution time of

the master to 1
3
:
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performance drops below the user-defined bound P (line

35). In line 27 of Algorithm 2, we make sure that we

only consider threads executing on worker cores

(Ti 2 AðCjÞ ^ Cj 6¼ master).

4.2 ATPbudget algorithm

Algorithm 3 presents the pseudo code for our budget-based

add/remove self-adaptation technique ATPbudget. The

algorithm is similar to the ATPbound algorithm, but differs

in the objective. While the ATPbound algorithm tries to keep

the application’s performance above a performance bound,

the ATPbudget algorithm seeks to stay inside a performance

budget. The budget is spanned around a user-defined target

performance Ptarget; where an user-defined aberration is

allowed. Occurring deviations from the performance bud-

get are weighed equally in the sense that partitionings

which are 9 times faster are equivalent to those which are

9 times slower.

The algorithm executes in user-defined time intervals

and re-partitions the system only if the application’s cur-

rent performance p is outside the specified budget

½Plower;Pupper� by either calling add_core() or

remove_core() (lines 1–6). This reduces the number of

function calls of add_core() or remove_core(). In

case the performance drops below Plower; the master cre-

ates an additional thread instance on the core that promises

either meeting the desired performance budget, if possible,

or else the largest increase in performance. When the

performance exceeds an upper threshold Pupper; the master

terminates the instance of the thread that will lead to the

reduction which is as close as possible to the desired per-

formance target. The add_core() function is modified

in the lines 18–19, to select the partitioning that relatively

approximates Ptarget best. Corresponding modifications can

be found for the function remove_core(), in lines 34–35.

104 J Real-Time Image Proc (2013) 8:95–110

123



The add_core() and remove_core() functions

of ATPbudget and ATPbound have an execution time of

OðjCjjT jÞ:

5 Real-time video object tracking

Tracking a moving object in a video sequence is a common

task for state estimation methods. Using our framework, we

have implemented a prototype system, using a software

implementation by Hess [10] as a template and reference.

Given an initial video frame, the user selects an object’s

initial position and its approximate outline in form of a

bounding box. The particle filter then estimates the object’s

position and size (particle) in each subsequent frame

(measurement) of the video sequence by comparing the

histogram of each particle with the histogram of the initial

selection (reference). Here, the observation stage creates

the histograms for each particle and the importance stage

performs the histogram comparison. An example of the

desired tracking behavior can be seen in Fig. 6. For more

details on the state and measurement models of this case

study, we refer to Happe et al. [9].

5.1 Experimental setup

Our adaptive prototype is designed according to the ref-

erence architecture depicted in Fig. 1 and consists of a

master processor, a worker processor, and two reconfigu-

rable hardware slots. We have implemented the prototype

on a Virtex-4 XC4VFX100 FPGA. An embedded PowerPC

405 CPU, clocked at 300 MHz, runs the software threads

and the OS kernel, while the remaining system including

buses, peripherals and hardware threads is clocked at

100 MHz. Hardware threads connect to the system bus

using OS interfaces provided by ReconOS to enable

transparent utilization of OS services by the hardware. A

second embedded PowerPC 405 CPU, clocked at

300 MHz, is used as a worker processor. In all experi-

ments, the particle filter tracks N = 100 particles divided

into chunks of 10.

The main goal of our self-adaptive approach is to

increase the efficiency with which an application designed

using our framework utilizes the reconfigurable area and

the worker processors. Regarding our object tracking case

study and depending on the input data characteristics and

the current predicted system state, different HW/SW par-

titionings with different area or core requirements may

suffice to keep the tracking performance (measured in

frames per second) inside a user-defined performance

budget. Therefore, we apply the add/remove self-adapta-

tion algorithm introduced in Sect. 4 to minimize the

required processing resources. The video object tracker is a

prime example to demonstrate the self-adaptive task par-

titioning for two reasons. First, the required processing

power strongly depends on the current contents of the

video frames and can vary significantly. Second, the data-

parallelism of individual stages of the application favors

multithreaded execution where adding more instances of

the same thread helps to increase performance (see Fig. 3).

In this application, placing the sampling or resampling

stages in hardware does not yield any performance

improvements; for simplicity, these partitionings have not

been included in the discussion. Thus, we focus on the

HW/SW partitionings defined in Table 1.

5.2 Static partitionings

Figure 7 depicts the performance figures, measured in

clock cycles per frame, of the individual partitionings when

tracking the soccer player in the video sequence as shown

in Fig. 6. For visual clarity, Fig. 7 is split into three dia-

grams, showing partitionings using one (top), two (middle),

and three (bottom) worker cores.

It can be seen that the overall particle filter performance

is data-dependent for all partitionings. This is mainly due

to the histogram creation in the observation stage, as the

computational complexity per particle depends on the size

of the bounding box. In the first 100 frames, when the

player occupies a larger region in the foreground, the filter

performance is comparably low. Over the following 100

frames, the performance increases as the player retreats

Fig. 6 Object tracking in a video sequence: the desired behavior of the object tracking is that the position and approximated outline of the player

is tracked and visualized using a bounding box. Happe et al. [8]
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into the background, since smaller bounding boxes and

thus fewer pixels need to be observed per frame. In the

soccer video, the number of pixels occupied by a particle’s

bounding box varies over time by a factor of 40, resulting

in large variations of the observation stage’s execution

time.

In contrast, the performance of the importance stage

remains constant over the course of the sequence because

the filter compares fixed-size color histograms which do

not depend on the particle’s scaling factor. Thus, mapping

a single importance thread to a hardware or software core

benefits the performance across the entire video.

The difference in the input-data dependency of the

observation and importance stages is illustrated in Fig. 8,

which highlights the individual stages’s execution times over

the video sequence of a software-only partitioning (sw).

Additional observation threads that execute in parallel

improve the performance significantly when the player is in

Table 1 HW/SW partitionings
sw All threads run in software

hwi One importance thread executes in HW

hwo One observation thread executes in HW

swi One CPU–HW importance thread

swo One CPU–HW observation thread

hwii Two importance threads execute in HW

hwoo Two observation threads execute in HW

hwoi One observation thread, one importance thread in HW

swi, hwi One CPU–HW, one HW importance thread

swi, hwo One CPU–HW importance, one HW observation thread

swo, hwi One CPU–HW observation, one HW importance thread

swo, hwo One CPU–HW and one HW observation thread

swi, hwii One CPU–HW, two HW importance threads

swi, hwoo One CPU–HW importance, two HW observation threads

swi, hwoi One CPU–HW, one hw importance, one HW observation thread

swo, hwii One CPU–HW observation, two HW importance threads

swo, hwoo One CPU–HW and two HW observation threads

swo, hwoi One CPU–HW, one HW observation, one HW importance thread

Fig. 7 Static measurements for

object tracking in a video

sequence (soccer) using one

worker core (top), two worker

cores (middle) and three worker

cores (bottom)
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the foreground and the histogram calculation involves a

higher number of pixels, i.e., in the first 100 frames of the

video. Consequently, this interval shows the most inter-

esting differences between different HW/SW partitionings.

When looking at the differences in performance of

individual worker cores, the CPU–HW thread implemen-

tation for the observation stage generally shows better

performance than the hardware thread implementation.

However, this difference becomes insignificant when the

tracked object’s size decreases, and the worker cores can-

not markedly reduce the observation stage’s workload for

the master core. In general, a combination of both hardware

and CPU–HW threads shows the best performance, as it

utilizes more computing resources and enables the highest

amount of parallel execution.

5.3 Self-adaptation strategy with bound

The time interval for running the self-adaptation algorithm

controls a trade-off between the overhead incurred by

partial reconfiguration and the latency with which the

algorithm reacts to changing data-dependent thread per-

formance. The overhead influences overall application

efficiency, while the reaction latency is relevant for the

real-time characterization of the system. In this example,

we execute the self-adaptation algorithm every 20 frames

with an initial offset of 8 frames. The speedup values si,j

are obtained in static measurements and given in Table 2.

Figure 9 shows an exemplary run of the system using

the ATPbound algorithm (Algorithm 2) that uses a single

lower performance constraint and removes thread instances

on worker cores if the estimated resulting performance

remains above the user-defined soft real-time constraint. As

input, the soccer video (see Fig. 6) was altered, such that

the first 300 frames are played four times (forward, back-

ward, forward, backward). This leads to a video where the

player runs into the background and then returns to the

foreground, twice, implied at the top of Fig. 9. This

exemplary run meets the real-time constraint 86% of the

time, excluding the initialization phase within the first 30

frames where first thread instances are created on the

worker cores. Although all cores run thread instances of the

framework, the constraint is missed in an interval of about

150 frames (frames 570–720). Here, the system is parti-

tioned in an optimal way for the given layout of worker

CPUs and HW slots. In other words, no other partitioning

could achieve the user-defined soft-real time constraint for

this input data.

5.4 Self-adaptation strategy with budget

Figure 10 shows an exemplary run of our self-adaptive task

partitioning system for the altered soccer video using the

ATPbudget algorithm (Algorithm 3). Again, with an offset

of 8 frames, the self-adaptation technique verifies every 20

frames whether an adaptation is needed based on perfor-

mance measurements on the master core. The application’s

performance is measured in frames per second and the

desired average performance range is set to 8 FPS, where

the budget is set to be 33% faster or slower than the defined

average performance.

The system starts with all threads running on the master

core. Since the resulting performance is lower than the

threshold, the first self-adaptation occurs at the 8th frame.

At this point, the observation stage takes about 60% of the

system’s execution time. The CPU–HW thread offers the

highest speedup and it is selected by the algorithm to boost

the performance from 2.67 to 4.15 FPS. At the next self-

adaptation point (frame 28), the performance still does not

meet the performance requirements. Now, the importance

stage consumes more than 54% of the system’s execution

time on the master core. The instantiation of an additional

hardware thread promises a total performance of 8.33 FPS,

which is close to the desired average performance. Thus, an

importance stage thread instance is reconfigured into one of

the hardware slots. Due to the reconfiguration overhead,

the importance thread becomes available with an offset of 8

frames.

After this, the system’s performance is inside the

requested performance budget for about 120 frames before

it exceeds the upper threshold. Now, the system consumes

more processing resources than necessary; hence, both

worker cores are released again and the application

Fig. 8 Individual execution times of the observation and importance

stages for each frame when the application runs entirely on the master

Table 2 Speedup values si,j for thread instances Ti,j

Stage sw hw CPU–HW

Observation 1.0 0.6 1.3

Importance 1.0 14.4 1.4
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continues with the initial partitioning where the entire

application runs on the master processor (frame 188).

Then, the measured performance stays inside the budget for

280 frames, while entirely executing on the master core. At

frames 468, 508, and 528, new cores are added to face the

dropping performance, which cannot be completely com-

pensated because the input data complexity overburdens

the system for the desired performance constraint. All three

worker cores are later deactivated at frames 768, 868, and

948.

This exemplary run stays inside the performance budget

for 65.75% of the time, the performance exceeds the

budget for 10.1% of the time, and it falls below the budget

for 24.1% of the time. The average performance is

7.18 FPS which is inside the desired performance budget

but below the desired average performance. Compared to

the exemplary run in Fig. 9, the overall worker core utili-

zation reduces from 51 to 46%, where we assume that a

worker core is fully utilized in an active state and unuti-

lized in a deactivated state.

5.5 Resource requirements

The resource requirements for the reference design (Fig. 1)

on a Virtex-4 XC4VFX100 FPGA are listed in Table 3.

The reference design consists of a static design including

the OS infrastructure, the master CPU, one CPU–HW

thread and two hardware slots. Hardware threads available

for the importance and the observation stage, which occupy

roughly the same amount of slices for both slots.

6 Conclusion

SMC methods are a natural choice for on-line estimation of

nonlinear systems, such as the tracking of an object in a

video sequence. However, the widespread adoption of

SMC methods within traditional real-time constrained

embedded systems is hampered by three major obstacles:

the application-specific input data dependencies make the

design of efficient, but real-time capable systems—with

task allocation at design time—infeasible. Attaining a

significant accuracy in the state estimation calls for high-

computational performance and dedicated hardware

Fig. 9 Self-adaptation exemplary run considering a soft real-time

constraint of 8 FPS: resulting performance in frames/second (upper
part) and thread assignment (lower part). Re-partitioning points are

represented by vertical dashed lines. The performance target is

avoiding the highlighted horizontal bar

Fig. 10 Self-adaptation exemplary run: resulting performance in

frames/second (upper part) and thread assignment (lower part). Re-

partitioning points are represented by vertical dashed lines. The

performance target is highlighted by a horizontal bar

Table 3 Resource requirements in slices of the self-adaptive system

(see Fig. 1) implemented on a Virtex-4 XC4VFX100 FPGA

Static design with one worker processor

and empty slots (%)

10,895 (25.8)

Size of 1st slot (%) 7,473 (17.7)

Size of 2nd slot (%) 7,923 (18.8)

Importance hardware thread (%) 2,792 (6.6)

Observation hardware thread (%) 5,020 (11.9)

108 J Real-Time Image Proc (2013) 8:95–110

123



support; and the heterogeneous nature of SMC methods

with both control- and data-intensive components does not

map well to pure software- or hardware-based systems. In

general, the specific requirements of different application

domains in which individual particle filters are applied, as

well as significant input data dependencies increase the

need for flexible and even self-adaptive run-time

environments.

In this article, we have presented a real-time capable

video object tracking application based on a multi-

threaded framework for implementing SMC methods on

hybrid CPU/FPGA platforms. We have demonstrated how

using a multithreaded HW/SW programming model can

enable the system to react to changing requirements

during run-time by employing a thread-centric add/

remove adaptation strategy. The programming model also

significantly simplifies the exploration of possible hard-

ware/software partitionings at design time. Besides

meeting the demanding requirements of real-time affinity,

heterogeneity in hardware and software, flexible reparti-

tioning and dynamic self-adaptivity, our particle filter

framework provides a powerful SMC design methodology

which autonomously handles the recurring low-level tasks

common to all SIR-based methods and presents a flexible

implementation and execution environment for particle

filters targeted at heterogeneous and embedded multi-core

systems. We have presented a video object tracking case

study based on this framework and have quantitatively

evaluated the performance of different static and dynamic

partitionings on a prototype employing a mix of custom

hardware cores and dedicated microprocessors. The

experiments show that our self-adaptation technique is

able to effectively re-partition the HW/SW composition of

a real-world tracking application to meet predefined soft

real-time constraints while minimizing the number of

active cores.

Future work involving our framework is mainly targeted

at the self-adaptation capabilities of the system. More

specifically, we plan to improve the framework’s handling

of software threads on worker processors by following two

distinct approaches. First, we intend to increase the CPU

cores’ utilization and allow them to handle multiple stages

at the same time by enabling the operating system to

transparently schedule multiple software threads onto a

single worker CPU. As a second step, we will try to

combine the reconfigurability of the hardware slots with

software-based processing to increase the flexibility of the

on-line self-adaptation technique by dynamically config-

uring soft-core processors, such as the Xilinx MicroBlaze,

to the reconfigurable hardware slots. Also, we will inte-

grate existing research on reduction of reconfiguration

overheads to further increase the efficiency of the

framework.
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