An Adaptive Sequential Monte Carlo Framework
with Runtime HW/SW Repartitioning

Markus Happe ', Enno Liibbers 2, Marco Platzner

nternational Graduate School, ?Computer Engineering Group
University of Paderborn, Germany
{markus.happe, enno.luebbers, platzner}Quni-paderborn.de

Abstract—The considerable computational complexity of Se-
quential Monte Carlo (SMC) methods is a major obstacle
when implementing them on CPU-based resource constrained
embedded systems. Hybrid CPU/FPGA systems, on the other
hand, are a more suitable target, as they can efficiently execute
both the control-centric sequential as well as the data-parallel
parts of an SMC application. Determining the optimal HW/SW
partitioning is challenging in general, and since in most cases
the optimal partitioning is data-dependent even impossible with
a design time approach.

In this paper, we present a framework for implementing
SMC methods on CPU/FPGA based systems such as modern
platform FPGAs. Based on a multithreaded programming model,
our framework allows for an easy design space exploration
with respect to the HW/SW partitioning. Additionally, an SMC
application can adaptively switch between several partitionings
during run-time to react to changing input data and performance
requirements. To show its feasibility and evaluate its performance
and area requirements, we demonstrate the framework on two
real-world case studies and show that partial reconfiguration
can be effectively and transparently used for realizing adaptive
HW/SW systems.

I. INTRODUCTION

State estimation of non-linear dynamic systems is an im-
portant problem with applications in areas as diverse as object
tracking, network packet processing, mobile communications
and navigation systems. Of the available methods for solving
this problem, Sequential Monte Carlo (SMC) Methods — also
called particle filters — enjoy widespread popularity and are
frequently applied when a system’s state is known only by
its statistical distribution and can only be partially observed
through possibly noisy measurements. For example, Woelk et
al. [1] perform outdoor tracking of athletes using a mobile
helicopter and an SMC-based tracking system. Jaj et al. [2]
employ particle filters in a wearable computing context for
estimating the location and activities of a person. Ing et al. [3]
present a distributed approach to particle filtering on wireless
sensor nodes. Another parallel particle filter approach is used
by Granmo [4] for real-time feature classification in data
streams using a pipelining technique.

Despite their divergent application areas, all SMC methods
follow the same fundamental algorithmic structure and thus
share significant portions of common functionality. They track
a number of possible state estimates, the particles, over time.
These particles are continuously compared to measurements
to determine the accuracy of the individual state estimates,

978-1-4244-4377-2/09/$25.00 © 2009 IEEE

175

and weighed accordingly. Usually, the quality of the state
estimation can be improved by increasing the number of
tracked particles.

The effective use of particle filters in resource-constrained
embedded systems is hindered by the considerable compu-
tational complexity associated with tracking a large number
of state estimates. Because the particles tracked by SMC
methods are independent, many of the involved data-centric
calculations can be parallelized and are, additionally, amenable
to implementation in dedicated hardware. At the same time,
the sequential algorithm controlling these computations is im-
plemented more efficiently using a general-purpose CPU. This
composite nature of particle filters makes them a perfect fit
for hybrid CPU/FPGA architectures, such as modern platform
FPGAs. At the same time, such hybrid hardware/software
systems increase the complexity of performance estimation
and require efficient and flexible mechanisms for design space
exploration.

In this paper we present a framework for implementing
particle filters on hybrid CPU/FPGA platforms which signif-
icantly simplifies the design of particle filters following the
sampling importance resampling (SIR) algorithm. Utilizing
our multithreaded reconfigurable operating system ReconOS
[5], the framework handles the recurring tasks of particle
data transfer and thread control, letting the designer focus
on the application-specific details of an individual particle
filter. Because the operating system transparently supports both
software and hardware threads using one unifying program-
ming model, the designer can quickly create different hard-
ware/software partitionings to evaluate their performance and
react to changing application and performance requirements.

The novel contributions over previous work [6] are the
adaptive reconfiguration capabilities of the framework and
significantly extended experimental results including two real-
world application case studies. Adaptive reconfiguration al-
lows us to change the HW/SW partitioning of the particle
filters at run-time. This is made possible by the transparent
hardware multitasking capabilities [7] of the underlying oper-
ating system.

The remainder of this paper is structured as follows: Section
IT discusses related approaches to accelerating particle filters
with reconfigurable hardware. Section III introduces the SMC
algorithm, while Section IV gives a short overview of the
multithreaded HW/SW operating system used by our frame-

FPT 2009

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on February 22,2010 at 06:52:19 EST from IEEE Xplore. Restrictions apply.

work. In Section V, a detailed description of the components
and composition of our framework is given, before Section
VI discusses two SMC-based prototypes from different ap-
plication domains, each with multiple HW/SW partitionings
and corresponding performance figures. A discussion of the
adaptive reconfiguration capabilities of the framework is given
in Section VII, together with performance data of an adaptive
prototype. Section VIII concludes the paper and gives an
outlook on our ongoing and future work.

II. RELATED WORK

The need of accelerating particle filter algorithms with re-
configurable hardware has been addressed by several research
groups in the previous years. Athalye et al. [8] developed
methods and architectures for accelerating the resampling
step of the SIR algorithm while at the same time reducing
the memory requirements for hardware implementations. Our
framework adapts their technique for parallelizing the resam-
pling phase. Sankaranarayanan et al. [9] presented a flexible
hardware architecture for SMC methods that uses density
sampling techniques from the more general domain of Monte
Carlo Markov chain algorithms. This allows them to drop the
resampling step which poses scalability and efficiency issues
when implemented in hardware. However, the approach does
not show significant improvements in quality over traditional
SIR filters. As we resolve some of the efficiency issues by
implementing the resampling step in software, we chose not to
adapt this method. Saha et al. [10] presented a parametrizable
framework for the hardware implementation of particle filters,
which bears some similarity to our approach in that it provides
an interface for the model definition of a particle filter.
However, their proposed framework targets a hardware-only
implementation of the filter and thus significantly differs from
our flexible, multithreaded hardware/software approach in [6].

III. SEQUENTIAL MONTE CARLO METHODS

Sequential Monte Carlo Methods estimate a system state
x; at time step t using probability distributions. We are
considering that the system state is to be tracked in a dy-
namic environment and the initial distribution p(Xj) is given,
where X is a random variable describing the state at time
t = 0. The system model is a Markov process of first order.
Thus, p(X;|X;—1) denotes the probability distribution of the
system’s current state given the system’s previous state. We
assume that the system state is hidden and can thus not be
observed directly, but can be tracked by measurements 1y,
which may be influenced by noise. The relation between
measurements and system states is described by the measure-
ment model. The distribution p(Y; = y.|X;) describes the
probability of the current measurement given the system’s
current state. In other words, we make a statement about
the likelihood of observing a specific measurement, provided
we are in a system state modeled by X,;. The probability
distribution of X, is approximated by a fixed number of
samples z¢, also called particles.

Sampling
z
i" Importance
<)
=
Resampling

Fig. 1.

Sampling importance resampling algorithm [6]

Figure 1 shows one iteration of the Sampling-Importance-
Resampling (SIR) algorithm for SMC methods, where parti-
cles are depicted as circles.

1) Sampling: The new particle state Z¢ is drawn or sampled
from the distribution p(X;|X; 1 = 2%_;). Now, the set
of particles Z forms a prediction of the distribution of
Xt-

2) Importance: The measurement model is evaluated for
every particle to determine the likelihood that the current
measurement y; matches the predicted state ¢ of the
particle. The resulting likelihood is assigned as a weight
wi to the particle. In Figure 1, particles with higher
weights are drawn as larger circles.

3) Resampling: Particles with comparatively high weights
are duplicated and particles with low weights are elim-
inated. The distribution of the resulting particles !
approximates the distribution of the weighted particles
before resampling.

For a more thorough discussion of the theoretical founda-
tions of SMC methods we refer to [11].

IV. MULTITHREADED OPERATING SYSTEM

Most contemporary operating systems (OS) for both em-
bedded and general-purpose computing support multithreaded
programming as a means to decompose an application into
individual threads of execution. In this way, the application
designer can express an application’s parallelism using a well-
defined programming model consisting of threads as well as
communication and synchronization primitives. Multithreaded
programming allows to effectively share computing resources
as well as transparently take advantage of the application’s
parallelism, given a suitable execution environment.

The operating system ReconOS [12][5] extends the multi-
threaded programming model to the domain of reconfigurable
hardware. Instead of regarding hardware modules as passive
coprocessors to the system CPU, they are treated as inde-
pendent hardware threads on an equal footing with software
threads running on the system. In particular, ReconOS allows
hardware threads to use the same operating system services
for communication and synchronization as software threads,
providing a transparent programming model across the hard-
ware/software boundary.

176

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on February 22,2010 at 06:52:19 EST from IEEE Xplore. Restrictions apply.

This transparency makes design space exploration regarding
the hardware/software partitioning of an application a straight-
forward task. Since all threads use the same programming
model primitives such as semaphores, mailboxes or shared
memory, they do not need to know whether their commu-
nication peers are software threads executed on the CPU, or
hardware threads mapped to the reconfigurable fabric. Thus,
the hardware/software partitioning of an application can be
changed by simply instantiating the appropriate threads.

memory
controller
ﬁ system bus bus
arbiter

CPU

-==x

Nemmmm- slot -=----" ~------ slot ------
— — — — reconfigurable area — — —

.
|
o
b

J

Fig. 2. ReconOS hardware architecture

ReconOS is implemented as an extension to existing operat-
ing system kernels, such as eCos or Linux, and targeted at plat-
form FPGAs integrating microprocessors and reconfigurable
logic. It takes advantage of the dynamic partial reconfiguration
capabilities of Xilinx FPGAs to reconfigure hardware threads
during run-time. This allows multiple hardware threads to
transparently share the reconfigurable resources. Figure 2
shows the hardware architecture of a typical ReconOS system.
The reconfigurable area is divided into multiple slots holding
the individual hardware threads. A dedicated hardware OS
interface (OSIF) handles the hardware thread’s OS requests
and forwards them to the operating system kernel running on
the CPU. It also manages the low-level synchronization and
includes the logic necessary for partial run-time reconfigura-
tion. [7] provides more detail on the hardware multitasking
mechanisms provided by ReconOS.

V. PARTICLE FILTER FRAMEWORK

All particle filters using the SIR algorithm rely on the
same underlying algorithmic structure. Hence, a substantial
part of the functionality, code, and — in the case of hybrid
CPU/FPGA systems — hardware circuitry can be re-used
supported by a framework-based design approach. Our particle
filter framework takes care of common tasks shared by all SIR
implementations, such as data transfer and control flow, and
lets the designer focus on the application-specific tasks, such
as system and measurement modeling.

The characteristic feature of our particle filter framework
is the use of multithreaded programming across the hard-
ware/software boundary. The combination of control-centric
and data-oriented processing inherent in particle filters closely
matches the target platforms and capabilities of our multi-
threaded operating system (see Section IV), which is used for
its implementation.

new measurement

Resampling

Sampling Observation

Importance

t+1% t

O sw thread [] hw thread [T message box

Fig. 3. Structure of a SIR filter implementation

Figure 3 shows the basic structure of an SIR implemen-
tation using our framework. The particles cycle through four
stages, the three SIR filter stages sampling, importance, and
resampling, and an additional observation stage. Each of
these stages can have an arbitrary number of software and
hardware threads. Based on our experiments and case studies,
as outlined in Section VI, we expect that in many applications,
determining the importance weight of a given measurement
requires particle-specific preprocessing of the measurements
and involves significant computational complexity. Since this
preprocessing can be done independently for every particle,
we have added an additional observation stage, again split
into an arbitrary number of hardware and software threads.
Our tests show that this technique significantly improves the
performance of our case studies.

Communication and synchronization between the threads of
different stages is managed using message box primitives of
ReconOS. The execution times of threads within the stages
may vary due to data-dependencies, memory latencies, CPU
load and other factors. The total number of particles is
thus split into chunks of user-defined size, which form the
atomic entries stored in the message boxes. This enables the
framework to balance the load between the threads of a stage
and at the same time keeps the communication overhead small.

As shown in Figure 3, a software thread named
preSampling precedes the sampling stage. This thread
retrieves new measurements using the application-specific re-
ceive_new_measurements function and prepares the sampling
stage by reassigning particles to chunks. This is necessary be-
cause the resampling stage of the previous iteration replicates
some particles and deletes others, leaving the chunks non-
uniformly populated with particles. Before particles can be
weighed at the importance stage, an observation has to be ex-
tracted from the measurement for each particle in the observa-

177

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on February 22,2010 at 06:52:19 EST from IEEE Xplore. Restrictions apply.

tion stage. Finally, before resampling, the preResampling
thread synchronizes the data flow of all particles to normalize
their weights. Additionally, a user function iteration_done is
executed to take care of application-specific tasks once per
iteration, such as transferring of estimation results to a display,
memory, or I/O, as well as hardware/software repartitioning of
the threads in the filter stages. The latter is useful when the
stage thread’s performance is data-dependent and thus changes
during runtime.

The application-specific system and measurement models
are captured by the functions prediction, extract_observation
and likelihood. For a software implementation, the user simply
fleshes out C function templates provided by the framework,
which are linked into the corresponding software threads
of the sampling, observation and importance stages. When
creating hardware versions of these functions, the user writes
specialized entities in VHDL, which are then embedded into
the hardware threads provided by the framework. Figure 4
illustrates the composition and interactions between functions
and modules provided by the user and the framework to assem-
ble a complete application. The complete set of application-
specific functions is listed in Table I.

framework
—

user application

get_new_
measurement()

prediction()
extract_observation(
‘. 2
likelihood() »| importance
<._

ion()
| ~ preResampling
-« R+ |
icles() -~
—

preSampling

sampling -

A

\ 4

observation

other
application
code

init_particles thr ntrol

|
. user-defined : -

e —p particle data € e
D framework-defined structures

Fig. 4.
functions

1
|
1
1
]
1
1
]
1
1
]
1
resampling |« -ll
1
1
]
1
1
]
]
1
]
|

System composition into application functions and framework

TABLE I
USER FUNCTIONS FOR CUSTOMIZING THE PARTICLE FILTER FRAMEWORK
function description
init_particles initializes the particles
prediction moves a particle using the system model

get_new_measurement retrieves a new measurement for every filter
iteration

extracts an observation for a particle from the
current measurement

weighs a particle using the measurement model
called once per iteration; handles output of best
estimate, HW/SW repartitioning or adaptation of
reference data

extract_observation

likelihood
iteration_done

The particle filter framework provides parallelization for
the sampling, observation, importance, and resampling stages.

The number of hardware and software threads for each stage
can be freely chosen, except that there must be at least
one thread in each stage. Generally, the number of threads
will depend on the availability of computing resources, i.e.
CPU utilization factors and logic area. The other threads of
the framework are mainly control-dominated or show limited
potential for parallelism and are therefore implemented in
software. Access to the needed data, the control flow, as well
as necessary operating system services for communication and
synchronization are completely managed by the framework.

The relevant data structures and initial hardware partitioning
is determined and initialized by a software thread, which also
sets the initial number of threads for each stage. Table II shows
an overview of the framework functions.

TABLE II
FRAMEWORK FUNCTIONS FOR INITIALIZATION AND EXECUTION
CONTROL
function description

create_particle_filter
init_reference_data
set_sample_hw/sw
set_observe_hw/sw
set_importance_hw/sw
set_resample_hw/sw
start_particle_filter

creates and initializes the particle filter structure
initializes reference data for likelihood function
sets number of HW/SW threads for sampling
sets number of HW/SW threads for observation
sets number of HW/SW threads for importance
sets number of HW/SW threads for resampling
starts the particle filter

VI. CASE STUDIES

In order to show the applicability of the framework to
different problems, we have implemented case studies from
two application domains. These two applications also serve
to demonstrate how the multithreaded underpinnings of the
framework facilitate design space exploration by providing
detailed measurements on the performance of different par-
titionings.

We have implemented the prototypes on a Virtex-II Pro
XC2VP30 FPGA and a Virtex-4 XC4VFX100 FPGA. On both
systems, an embedded PowerPC 405 CPU, clocked at 300
MHz, runs the software threads and the OS kernel, while the
remaining system including buses, peripherals and hardware
threads is clocked at 100 MHz. Hardware threads connect to
the system bus using OS interfaces provided by ReconOS,
which enable transparent utilization of OS services by the
hardware. Both applications track N = 100 particles divided
into chunks of 10.

A. Object tracking

Tracking a moving object in a video sequence is a common
task for state estimation methods. Using our framework, we
have implemented a prototype system, using a software imple-
mentation by Hess [13] as a template and reference. Given an
initial video frame, the user selects an object’s initial position
and its approximate outline in form of a bounding box. The
particle filter then estimates the object’s position and size in
each subsequent frame of the video sequence. An example of
the desired tracking behavior can be seen in Figure 5.

178

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on February 22,2010 at 06:52:19 EST from IEEE Xplore. Restrictions apply.

(c) Frame 150

(d) Frame 260

Fig. 5. Object tracking in a video sequence (soccer)

The state and measurement models and other application-
specific parameters are defined as follows:

« Particle: A particle is composed of the horizontal and
vertical coordinates x and y of the object’s center pixel
and the scaling factor s for the bounding box. The height
and width of the original bounding box, as well as the
first derivatives v, vy, vs are also stored in the particle
to later compute p(X;|X;—1).

o System model: The values for z, y, s, v,, vy and v, are
predicted as follows, where u,, models the system noise:

Qg = 41+t Vo, + Uq,
Vo = O — 041

Ua, ~ N(0,0%)

o Measurement: In each iteration, the user function
get_new_measurement reads a new frame from the video
sequence.

o Observation: The user function extract_observation ex-
tracts HSV color histogram data from the measured video
frames, distinguishing between colored and uncolored
pixels. The histogram data for particle ¢ is stored in an
array H;(k), k=0,...,1— 1.

o Reference data: The reference data is the histogram
Hpg(k) of the object selected by the user in the first frame.

¢ Likelihood function: To calculate the likelihood, the his-
togram H;(k) of the estimated frame region is compared
with the reference histogram Hpr(k) using the equation:

o€ {z,y,s}

-3 \/(Hi(k)HR(k))>

wz = exp (0<k<!

Thus, the likelihood value assigned to a particle depends
exponentially on the similarity between the particle his-
togram and the histogram of the reference object.

The video data is stored on a PC, converted to HSV color
space and transferred via Ethernet to the prototype boards.
There, the data is cached in local DRAM, processed, and
output to a VGA controller or sent back to the PC via Ethernet.
The output includes a bounding box framing the most likely
estimate, which is derived from the average of all particles
after each importance step.

The HW/SW partitioning of the individual filter stages has a
direct impact on the attainable performance. The performance
prediction for a specific partitioning or the identification of an
optimal partitioning is a rather involved problem, and mostly
the performance is even data-dependent. Thus, a designer will
implement the required functions in software and/or hardware
and then experiment with different HW/SW partitionings,
which can be very time-consuming. Here, our framework with
its underlying multithreaded programming model assists the
designer and allows him to quickly synthesize and evaluate
different partitionings.

In this application, placing the sampling or resampling
stages in hardware does not yield any performance improve-
ments; for simplicity, these partitionings have not been in-
cluded in the discussion. Instead, we have focused on the nine
hardware/software partitionings shown in Table III.

TABLE III
HW/SW PARTITIONINGS FOR THE OBJECT TRACKING CASE STUDY
partitioning
SW All threads run in software.
hw; One importance thread executes in hardware.
hw;; Two importance threads execute in hardware.
hw, One observation thread executes in hardware.
hwoo Two observation threads execute in hardware.
hw,; One observation thread, one importance thread in hw
hw 04 Two observation threads, one importance thread in hw
hwoii One observation threads, two importance threads in hw
hwooii Two observation threads, two importance threads in hw

Figure 6 shows the performance of the individual partition-
ings measured in clock cycles per frame. The measurements
were performed on the soccer video sequence displayed in
Figure 5.

During the first 100 frames of the sequence, the soccer
player fills a large part of the video frame. Consequently,
the bounding boxes maintained by the particles are rather
large, making the histogram computation expensive. Over the
course of the next 150 frames, the soccer player retreats into
the background, causing the scaling factor of the particles
to diminish. Consequently, the histogram calculations need to
be done on smaller bounding boxes which explains the drop
in necessary clock cycles per frame. Finally, as the player
remains at about the same distance during the remainder of
the video sequence, the number of clock cycles per frame
levels out.

It can be seen that the performance gain obtained by placing
one importance thread in hardware is data-independent across
the entire video sequence. This is to be expected, as in this
stage two fixed-sized histograms are compared, regardless
of the scaling factor. Executing the observation stage in a

179

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on February 22,2010 at 06:52:19 EST from IEEE Xplore. Restrictions apply.

40000
o 35000
€
8 30000
2
oS 25000 [m-eoeeey
= :
X 20000 |
o
[3] o T e
- 15000
c
I i
% 10000
o
ESS

5000

0 1 1 1 1 1 1 1

0 50 100 150 200 250 300

frame

350 400

cycles

Fig. 6. Object tracking: runtime in 7 - of different static partitionings

single hardware thread increases the performance when large
amounts of pixel data have to be processed into histograms
for a given frame, i.e. when a particle’s scaling factor is high.
Thus, a performance gain can only be achieved for the first 250
frames before the soccer player retreats into the background.

Because a stage’s computations are independent for different
particles, we can exploit thread-level parallelism by mapping
multiple threads in hardware, provided that the preceding
stages can sustain the required data bandwidth. Thus, multiple
importance threads only improve performance if the observa-
tion stage is also parallelized at the same level, as shown in the
measurements of the partitionings hw,e;, hwy; and Aweeg;.;
otherwise, no additional performance gain is achieved (hw;;,
hwe;).

In summary, we see that a single importance thread in
hardware does increase the performance of the object tracker
in general while the benefit of using one or more observation
threads is data-dependent. This fact can be used for efficient
utilization of the reconfigurable area, as discussed in Section
VII.

B. Beat tracking

As a second case study from a different application domain,
we have developed a beat tracker for following the beat
frequency in audio files. Beat tracking - like foot-tapping or
finger-flipping to the music - can be done by most humans
intuitively. However, this task is challenging for a digital sys-
tem. Our implementation is based on the technique presented
by Dixon [14], where a multi-agent system tracks tempo
hypotheses over the course of a piece of music.

To obtain an initial distribution of particles, the sound file
is split into short intervals (frames), which are analyzed for
sound events with high amplitude and low frequency. Starting
from the beginning, a tempo estimate (i.e. particle) is assigned
to the maximum event exceeding a threshold in every interval
until £ initial beats are found. A particle is composed of the
last beat position and the tempo. The framework stages only

execute for a particle, if the estimated beat position is inside
the current sound interval. The sampling stage predicts the
next beat position according to the current tempo and additive
Gaussian noise. When a particle predicts a beat in the current
audio frame, the audio data near the prediction is transformed
into the frequency domain using a fast Fourier transformation
(FFT) in the observation stage. In the importance stage, this
data is analyzed. If low frequencies dominate and the audio
data exceeds a minimal amplitude A,,;, at the predicted beat
position, then the likelihood value is set to the absolute value
of the amplitude. The particle with the highest likelihood is
selected for beat tracking.

In our case study, we use raw audio data with one audio
channel (mono), a sample rate of 44 kHz and a sample depth
of two bytes. The audio frames have a fixed size (8kb) and are
transfered as TCP/IP-packages via ethernet from a desktop PC
to the FPGA. The framework superimposes the beat estimates
on the audio frames at the predicted positions and sends them
back to the desktop PC for display and playback. To evaluate
our beat tracker, we have chosen music pieces with clearly
discernible beats in the beginning.

A . R LN N . U . LN N 1

1,0
05

05
1,0

Fig. 7. Beat tracking in a music sequence

Figure 7 shows a processed audio file. Vertical lines repre-
sent a beat estimate. It can be seen that the beat tracking starts
with an accurate tempo hypothesis of the first four initial beats.
After three seconds the estimated beat frequency is halved, but
otherwise stays consistent. While more sophisticated methods
(e.g. [15]) may improve the quality of beat extraction, our
implementation aptly serves to demonstrate the applicability
of our SMC framework to different application domains.

2500

2000

1500

1000

500

thousand clock cycles/frame

sound frame

cycles

Fig. 8. Beat tracking: runtime in 7 - of different partitionings

180

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on February 22,2010 at 06:52:19 EST from IEEE Xplore. Restrictions apply.

Figure 8 shows performance measurements obtained from
our beat tracking prototype. Depending on the actual pre-
dictions, processing occurs only during frames in which the
application assumes a beat. For example, in Figure 8 many
particles project a beat in frame 19, increasing the com-
putational demand in the corresponding time interval. We
have used the same partitionings as defined for our first case
study. Again, the observation and the importance stage are the
computationally most intensive stages, and thus our primary
focus for performance improvements. A dedicated FFT core
is provided to accelerate software threads of the observation
stage, effectively elevating the software performance of a
single thread to the level of a hardware observation thread. In
other words, adding additional hardware observation threads
only improves performance by exploiting thread-level paral-
lelism. As in the first case study, providing more than one
importance thread in hardware has no positive effect.

C. Resource requirements

TABLE IV
RESOURCE REQUIREMENTS IN SLICES (XC4VFX100)

partitioning object tracking beat tracking OS overhead
SW 5372 (12.7%) 7798 (18.5%) 0 (0%)

hw; 8737 (20.7%) 10304 (24.4%) 1277 (3%)
hw,; 12015 (28.5%) 13013 (30.9%) 2554 (6%)
hw, 11611 27.5%) 11611 (27.5%) 1277 3%)
hwoo 17796 (42.2%) 15647 (37.1%) 2554 (6%)
hwo; 14901 (35.3%) 14317 (33.9%) 2554 (6%)
hwoo; 21298 (50.5%) 18170 (43.1%) 3831 (9%)
hwos 18384 (43.6%) 16861 (40.0%) 3831 (9%)
hWooii 24683 (58.5%) 20726 (49.1%) 5108 (12%)

The resource requirements of the individual partitionings of
the object tracking prototype and the beat tracking prototype
on a Virtex-4 XC4VFX100 FPGA are given in slices in Ta-
ble IV. The numbers include the OS area overheads consisting
of the OSIF area requirements, which are also explicitly listed
in the rightmost column. For all hw designs, the area occupied
by the CPU, bus infrastructure and other peripherals is roughly
equivalent to the area requirements of the sw partitioning. The
increased size of the non-thread area is due to the additional
FFT core used for SW thread acceleration.

VII. ADAPTIVE RECONFIGURATION

Depending on the system and measurement models of a
given application, individual stages of the SIR algorithm may
benefit from a hardware implementation to a varying degree.
Our framework simplifies the exploration of different HW/SW
partitionings, the performance of which are often not easily
predictable, through the transparent multithreaded approach
explained in Sections IV and V. However, in many applica-
tions, such as the case study presented in Section VI-A, the
performance of individual stage threads is not only difficult to
predict, but data-dependent. Thus, a partitioning that is optimal
at one point during the video sequence may at a different
point be inferior to another partitioning. In this case, changing
the HW/SW partitioning during runtime would increase the

overall performance of the application. Additionally, if the
application has to satisfy certain performance constraints, such
as a predefined iteration frequency of the SIR algorithm, we
can change the HW/SW partitioning during runtime to fulfill
these constraints while optimizing the application’s area usage.

ReconOS transparently supports hardware multitasking
through the dynamic reconfiguration of hardware threads. It
offers two multitasking models: non-preemptive multitasking,
where hardware threads run uninterrupted from creation to
completion, and cooperative multitasking, which allows the
preemption of hardware threads at specified preemption points,
usually during blocking operating system calls.

In ReconOS, a high-priority software thread, the hardware
scheduler maintains state data (e.g. inactive, running, blocking,
terminated) about all hardware threads in the system and
controls the reconfiguration process. On a hardware scheduling
event, such as thread creation, termination or, in the case
of cooperative multitasking, when a thread has reached a
preemption point, the scheduler determines the appropriate
set of hardware threads and reconfigures them into the slots
of the reconfigurable fabric. More detail about the hardware
multitasking techniques in ReconOS can be found in [7].

We have evaluated both multitasking techniques for the
hardware threads of our framework. Compared to non-
preemptive multitasking, the cooperative approach has the
potential of better area utilization, as inactive hardware threads
can be temporarily replaced by other runnable hardware
threads. At the same time, this increases the number of
reconfigurations, causing the total reconfiguration overhead
to rise. As a result, the two techniques are applicable to
different scenarios. Applications which are able to tolerate
reconfiguration delays or require only infrequent repartitioning
can improve their area utilization by cooperatively sharing the
reconfigurable resources. Other applications can still benefit
from run-time reconfiguration by utilizing the non-preemptive
approach. Reducing reconfiguration overheads is a major focus
of our ongoing efforts to improve the reconfiguration infras-
tructure of our prototypes, and will increase the number of
applicable scenarios for cooperative hardware multitasking.

To evaluate adaptive reconfiguration within our framework,
we have enabled it for the object tracking case study presented
in Section VI-A using the non-preemptive multitasking model.
Here, the HW/SW partitioning is changed by terminating
unneeded hardware threads or creating new hardware threads,
using the standard multithreading API. The dynamic reconfig-
uration process itself is transparently managed by the hardware
scheduler. By estimating the performance of the observation
stage based on the scaling factor of the particles, the appli-
cation can decide whether the observation thread should be
executed in hardware or software to satisfy a previously set
performance requirement, while at the same time using as
little of the reconfigurable area as possible, thus yielding more
processing resources to other executing threads or applications
running at a lower hardware scheduling priority.

The performance of an adaptive partitioning of the object
tracking application optimizing area usage can be seen in

181

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on February 22,2010 at 06:52:19 EST from IEEE Xplore. Restrictions apply.

40000

T T T
sw
adaptive

35000

30000 |17V s
25000 |
20000
15000

10000

thousand clock cycles/frame

5000

0 1 1 1 1 1
0 50 100 150 200 250

frame

Fig. 9. Object tracking: runtime in %l:; of adaptive partitioning, compared

to static sw and hw, partitionings. Reconfiguration occurs at frames 0 and
144, the horizontal line represents the performance requirement.

Figure 9. At the beginning of the video, the comparably large
scaling factor prompts the application to instantiate a hardware
observation thread, similar to the hw, partitioning. This causes
the frame processing time to drop below the performance
requirement of 33 x 105 cycles per frame. Because the ad-
ditional bus macro logic required for partial reconfiguration
adds additional latency to OS calls and memory accesses, the
adaptive partitioning does not exactly reach the performance
of the static hw, partitioning. As soon as the soccer player
retreats into the background, the scaling factor recedes below a
threshold of 0.9. This allows the framework to switch back to a
software-only partitioning, comparable to the sw partitioning,
which performs good enough for the performance requirement
but frees one slot in the reconfigurable logic to be used by
other threads.

VIII. CONCLUSION

In this paper we have presented an adaptive framework
for implementing Sequential Monte Carlo methods on hy-
brid CPU/FPGA platforms. We have demonstrated how using
a multithreaded hardware/software programming model can
simplify the creation of multiple prototypes to explore the
design space of possible hardware/software partitionings. We
have presented two case studies from different application
domains based on this framework and evaluated the per-
formance of different partitionings. By extending the multi-
threaded paradigm to reconfigurable hardware, we have shown
how transparent hardware multitasking using dynamic partial
reconfiguration can be used for exploiting data-dependencies
for performance and area optimization of our proposed frame-
work.

Our ongoing and future work is focused on enabling a
greater degree of run-time reconfigurability for multithreaded
hardware. This entails infrastructural improvements in our
hardware architecture, as well as further research into effective
scheduling of hardware threads in ReconOS. As discussed

in Section VII, the considerable reconfiguration overhead
has a direct impact on the applicability and feasibility of
the proposed hardware multitasking techniques. We expect
these refinements to directly benefit applications based on our
framework.

ACKNOWLEDGMENT

This work was supported by the German Research Founda-
tion under project number PL471/2-1 and by the International
Graduate School of Dynamic Intelligent Systems.

REFERENCES

[11 F. Woelk, I. Schiller, and R. Koch, “An Airborne Bayesian Color
Tracking System,” in IEEE Intelligent Vehicles Symposium, June 2005.

[2] A. Jaj, A. Subramanya, D. Fox, and J. Bilmes, “Rao-Blackwellized
Particle Filters for Recognizing Activities and Spatial Context from
Wearable Sensors,” in 9th International Symposium on Experimental
Robotics, 2006.

[3] G. Ing and M. J. Coates, “Parallel Particle Filters for Tracking in
Wireless Sensor Networks,” in 6th IEEE Workshop on Signal Proc.
Advances in Wireless Communications, 2005.

[4] O.-C. Granmo, “Pipelined Execution of a Parallel Particle Filter for
Real-time Feature Selection and Classification in Data Streams,” WSEAS
Transactions on Information Science and Applications, 2004.

[5] E. Liibbers and M. Platzner, “ReconOS: An RTOS supporting Hard- and
Software Threads,” IEEE Int. Conf. on Field Programmable Logic and
Applications, 2007.

[6] M. Happe, E. Liibbers, and M. Platzner, “A Multithreaded Framework
for Sequential Monte Carlo Methods on CPU/FPGA Platforms,” Inter-
national Workshop on Applied Reconfigurable Computing, 2009.

[7] E. Liibbers and M. Platzner, “Cooperative Multithreading in Dynami-
cally Reconfigurable Systems,” 19th International Conference on Field
Programmable Logic and Applications, 2009.

[8] A. Athalye, M. Boli¢, S. Hong, and P. M. Djuric, “Generic Hardware Ar-
chitectures for Sampling and Resampling in Particle Filters,” EURASIP
Journal on Applied Signal Processing, 2005.

[9] A. C. Sankaranarayanan, R. Chellappa, and A. Srivastava, “Algorithmic
and Architectural Design Methodology for Particle Filters in Hardware,”
Int. Conf. on Computer Design, 2005.

[10] S. Saha, N. K. Bambha, and S. S. Bhattacharyya, “A Parameterized
Design Framework for Hardware Implementation of Particle Filters,”
IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2008.

[11] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo
Methods in Practice. Springer, 2001.

[12] E. Liibbers and M. Platzner, “ReconOS: Multithreaded Programming for
Reconfigurable Computers,” ACM TECS Special Issue (CAPA), 2009, to
appear.

[13] R. Hess, “Particle Filter Object Tracking,” 2006, http://web.engr.
oregonstate.edu/~hess.

[14] S. Dixon, “Automatic extraction of tempo and beat from expressive
performances,” Journal of New Music Research, vol. 30, pp. 39-58,
2001.

[15] W. A. Sethares, R. D. Morris, and J. C. Sethares, “Beat tracking of mu-
sical performances using low-level audio features,” IEEE Transactions
on Speech and Audio Processing, 2005.

182

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on February 22,2010 at 06:52:19 EST from IEEE Xplore. Restrictions apply.

