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Motivation

= partial reconfiguration enables time-sharing of
reconfigurable hardware resources

= hardware threads, as implemented by ReconOS, provide
partitioning of an application into suitable modules for
hardware multitasking

= non-preemptive multitasking techniques are unsuitable
for many applications
= long-running threads may make system unresponsive
= asynchronous (i.e. blocking) operations must be
registered with an event loop via callback functions

= preemptive multitasking faces substantial challenges
when applied to partially reconfigurable devices
= determining and accessing the relevant context of a
hardware module is a complex task
= readback or scan chain techniques involve significant
overheads and are often device-dependent
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ReconOS Programming Model ReconOS Execution Model
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Approach

Cooperative Multitasking
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= threads can voluntarily relinquish (y1eld())

their execution slot

find | found

= threads are responsible for saving and

restoring their state on yield or resume
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= ideally, threads yield on blocking OS calls, :

during which they would not perform any :
computations

* in ReconOS, cooperative multitasking is only
employed for HW threads; SW threads are
scheduled preemptively

= the task of managing the reconfigurable
resources is shared between two software
threads

= a hardware thread's delegate thread and a
high-priority hardware scheduler thread
= no changes to the OS kernel are necessary
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Implementation in ReconOS

= for every slot in the system, a core is placed
and routed, resulting in ngois X ncores pPartial
bitstreams

= data structures modeling the relationships
between slots, hardware threads, cores, and
bitstreams are shared between the delegates
and the hardware scheduler
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thread's functionality is called a core

. hardware access

restore
state

4

f wait for
L reconfiguration

delegate thread

,__! synchronized

-~

-

Scheduling Example s

Experimental Results

dividual OS operations

= (a) consider two threads, A and B ST Lotock ta, = timing overheads of in
= thread A runs for z49, blocks for #,cx, and o Al — 0 5 -
then runs again for 4; ) h 1 thread initialization
= thread B simply runs for #z AR — thread suspend
" loading a thread onto the FPGA takes R Lbiock ta, thread resume
h ‘ state save (4096 bytes)
(b) A ) A

= (b) with non-preemptive multitasking,
threads A and B are executed
consecutively, with a total run time

Tw(A, B) = 2t; + tao + tar + tpiock + B

= (c) with cooperative multitasking, thread A
can yield its execution slot to thread B
while blocking (i.e. on an OS call),
resulting in an execution time of

T(A, B) = 2t; + tao + tar + tas + tar +
max(tpiock, t1 + tB)

tas and 14, are the times to save and restore Ig > Las

\ A's state, respectively.

= Thus, the cooperative multitasking approach reduces
the total run-time, provided that both
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state restore (4096 bytes)
reconfiguration time (233 kBytes)

1.76 ms

93.12 us

192.32 us

37.51 ys (104.1 MB/s)
45.19 us (86.4 MB/s)
99.96 ms
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= application execution time of a prototype implementation of
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4 Outlook / Future

preemptively scheduled multithreaded software system

Work

= efficient scheduling algorithms for a cooperatively multitasking subset of hardware threads in a

= improved reconfiguration infrastructure to decrease reconfiguration overhead
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