'L‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Department of Computer Science

Computer Engineering Group
www.upb.de/cs/ag-platzner

a 2
Motivation

= partial reconfiguration enables time-sharing of
reconfigurable hardware resources

= hardware threads, as implemented by ReconOS, provide
partitioning of an application into suitable modules for
hardware multitasking

= non-preemptive multitasking techniques are unsuitable
for many applications
= long-running threads may make system unresponsive
= asynchronous (i.e. blocking) operations must be
registered with an event loop via callback functions

= preemptive multitasking faces substantial challenges
when applied to partially reconfigurable devices
= determining and accessing the relevant context of a
hardware module is a complex task
= readback or scan chain techniques involve significant
overheads and are often device-dependent

Enno Lubbers, Marco Platzner

FPL 2009, 01.09.2009

-

. : 7
ReconOS Programming Model ReconOS Execution Model
similar to existing APls = OS interface module (OS/F) enables transparent
= eCos communication and synchronization between
= POSIX hardware and software
Task | €——— @ = OS calls from hardware are relayed to delegate
O e | Timer threads running on the syster_n s CPU | |
\ = HW multitasking through partial reconfiguration
= task management o aved
" memory management
= synchronization | / { CPU } [ICAP J [;;;g;;’;gr K:>[DRAM J
= communication Y |;
OS objects | @ @ roiig
= tasks (HW or SW) ~_ oS [osF)
= shared memory enL IRRFYVY enL INRPYVY
- semaphores 2= 0cG30641ad __“%» busmacro __ __ _“#» busmacro __ -
* queues/FIFOs = § 1275 7 7L S
= fimers |§ | |
N Slgnals Hardware Software I : { hw thissS E : { e } E I
" s | |
B oconfiguraoio arca Sl
Y,

\4
&

Approach

Cooperative Multitasking

- e - - e e - e e e e e e e e - S e - - e - - G e - -y

mark as

!

= threads can voluntarily relinquish (y1eld())

their execution slot

find | found

= threads are responsible for saving and

restoring their state on yield or resume

I

= ideally, threads yield on blocking OS calls, :

during which they would not perform any :
computations

* in ReconOS, cooperative multitasking is only
employed for HW threads; SW threads are
scheduled preemptively

= the task of managing the reconfigurable
resources is shared between two software
threads

= a hardware thread's delegate thread and a
high-priority hardware scheduler thread
= no changes to the OS kernel are necessary

N

Implementation in ReconOS

= for every slot in the system, a core is placed
and routed, resulting in ngois X ncores pPartial
bitstreams

= data structures modeling the relationships
between slots, hardware threads, cores, and
bitstreams are shared between the delegates
and the hardware scheduler

|
request :
yield :

waiting

wait for
reconfiguration

wake up
scheduler

-— e G e e e e e o

'—»[initialize
Y

find

I
I
I
I
wait for I | ‘ i >[find free| not >[i] : _______________ .
SIQAnal | aiting T St | found T vielding T, | [wait for HW | read request mark as] |
| i | . . I
________ e found found found|in S; | request from HW yielding i
: | | |
wake up cancel yield configure save T,'s | N | |
threads request T, into S state I v i !
I
__________________________________ | write return < N yielding execute] - : f wake up] i
r) 1
e e value to HW call” call : Lscheduler i
i 1
Y| 20 1
clear yielding mark as wake up
= a synthesized hardware circuit representing a D flag waiting scheduler
thread's functionality is called a core

. hardware access

restore
state

4

f wait for
L reconfiguration

delegate thread

,__! synchronized

-~

-

Scheduling Example s

Experimental Results

dividual OS operations

= (a) consider two threads, A and B ST Lotock ta, = timing overheads of in
= thread A runs for z49, blocks for #,cx, and o Al — 0 5 -
then runs again for 4;) h 1 thread initialization
= thread B simply runs for #z AR — thread suspend
" loading a thread onto the FPGA takes R Lbiock ta, thread resume
h ‘ state save (4096 bytes)
(b) A) A

= (b) with non-preemptive multitasking,
threads A and B are executed
consecutively, with a total run time

Tw(A, B) = 2t; + tao + tar + tpiock + B

= (c) with cooperative multitasking, thread A
can yield its execution slot to thread B
while blocking (i.e. on an OS call),
resulting in an execution time of

T(A, B) = 2t; + tao + tar + tas + tar +
max(tpiock, t1 + tB)

tas and 14, are the times to save and restore Ig > Las

\ A's state, respectively.

= Thus, the cooperative multitasking approach reduces
the total run-time, provided that both

+ 1Ay and

\

state restore (4096 bytes)
reconfiguration time (233 kBytes)

1.76 ms

93.12 us

192.32 us

37.51 ys (104.1 MB/s)
45.19 us (86.4 MB/s)
99.96 ms

the scheduling examp

= application execution time of a prototype implementation of

le

-
1.50

Iblock > TAs + [ar + 1

4 Outlook / Future

preemptively scheduled multithreaded software system

Work

= efficient scheduling algorithms for a cooperatively multitasking subset of hardware threads in a

= improved reconfiguration infrastructure to decrease reconfiguration overhead

AN

-
-

A%
4 References

o

= E. Lubbers and M. Platzner, ,Multithreaded Programming for Reconfigurable Computers,” ACM
Transactions on Embedded Computing Systems (TECS), 2009, to appear

= E. Lubbers and M. Platzner, ,ReconOS: An RTOS supporting Hard- and Software Threads," in 17th
IEEE International Conference on Field Programmable Logic and Applications (FPL), 2007

A\

Enno Lubbers
Computer Engineering

VAN

University of Paderborn

Contact

enno.luebbers@uni-paderborn.de
+49 5251 605397
http://tr.im/luebbers

Group

/

http://tr.im/luebbers
http://tr.im/luebbers

