
COOPERATIVE MULTITHREADING IN DYNAMICALLY RECONFIGURABLE SYSTEMS

Enno Lübbers and Marco Platzner

University of Paderborn
email: {enno.luebbers, platzner}@upb.de

ABSTRACT

Preemptive multitasking, a popular technique for time-
sharing of computational resources in software-based sys-
tems, faces considerable difficulties when applied to par-
tially reconfigurable hardware. In this paper, we propose
a cooperative scheduling technique for reconfigurable hard-
ware threads as a feasible compromise between computa-
tional efficiency and implementation complexity. We have
implemented this mechanism for the multithreaded recon-
figurable operating system ReconOS and evaluated its over-
heads and performance on a prototype.

1. INTRODUCTION

Multithreaded programming is an increasingly popular way
to express concurrency in applications. It allows to decom-
pose an application into separate threads of execution, which
can be synchronized using a defined set of programming
model objects provided by an operating system. With the
concurrency made explicit through the usage of threads, such
an application can be mapped to a parallel execution envi-
ronment, for example a multiprocessor machine. However,
if there are more threads than processing elements, a way
has to be found to share the computing resources.

Conventional software operating systems employ sev-
eral multitasking techniques. Non-preemptive techniques
are simple to implement and simplify thread synchroniza-
tion on uniprocessor systems, albeit at the cost of unpre-
dictable latencies and no support for asynchronous opera-
tions. At the other end of the spectrum, preemptive mul-
titasking enables the perceived simultaneous execution of
multiple tasks on a single processor with low latencies, some
level of predictability, and support for asynchronous (i.e.
blocking) functions; it does, however, require elaborate syn-
chronization schemes and incurs a moderate scheduling over-
head. For a certain set of applications, there exists a mid-
dle ground in cooperative multitasking. This technique en-
ables individual threads to voluntary relinquish control of
the processor to allow other threads to execute. With appro-
priately ’behaved’ tasks, it can reduce latencies compared to
non-preemptive methods, while, on uniprocessor systems,
avoiding many of the synchronization pitfalls of preemptive

multitasking. In software-based systems, though preemp-
tive multitasking seems to be the more popular method for
implementing multithreaded applications, cooperative tech-
niques are still used within GUI toolkits and for the imple-
mentation of language features such as Python’s generator
functions or Perl’s yield statement. In fact, Moura et. al. [1]
advocate the increased use of coroutines, which in essence
are cooperatively executing functions, as a general control
abstraction in modern programming languages.

In the context of multithreaded systems for reconfigura-
ble hardware, selecting an appropriate multitasking tech-
nique becomes a more complex challenge. Kalte et. al. [2]
implement a mechanism using bitstream readback to extract
and later re-inject the contents of storage elements known to
contain a task’s state information. While flexible and trans-
parent, this technique involves considerable overhead, since
the contents of CLB registers can make up less than 1% of
an FPGA’s configuration bitstream. An alternative approach
is the inclusion of register scan chains in a task’s logic, as
proposed by Jovanovic et. al. [3]. It does, however, incur a
significant area and time overhead when preempting a task.

In this paper, we propose using cooperative multitasking
techniques together with partial reconfiguration for sharing
FPGA logic resources between hardware modules as a fea-
sible compromise between execution efficiency and imple-
mentation complexity. We have implemented cooperative
multitasking for hardware threads in the ReconOS [4] en-
vironment, effectively combining a preemptive scheduling
technique for software threads on the system’s CPU with
cooperative scheduling for hardware threads in the FPGA’s
fabric. To evaluate our method’s overheads and demonstrate
its feasibility, we have performed measurements on a proto-
type FPGA implementation.

2. RECONOS

This section gives an overview of the programming model
and execution environment which make up the ReconOS op-
erating system for CPU/FPGA platforms. A more detailed
discussion can be found in [5] and [4].

The ReconOS project extends the multithreaded program-
ming model, as implemented in many contemporary soft-



CPU

bus 
arbiter

OSIF

hw thread

bus macro

reconfigurable area

system bus

memory 
controller DRAMICAP

OSIF

bus macro
en en

slot slot

hw thread

Fig. 1. ReconOS system architecture

ware operating systems, to the domain of reconfigurable hard-
ware. Instead of modelling hardware components mapped to
an FPGA’s logic fabric as passive coprocessors, ReconOS
treats hardware modules as independent threads. To enable
hardware threads to access OS objects, such as semaphores
or mutexes, the corresponding software API calls are ex-
posed to the hardware through a VHDL library. The proce-
dures provided by this library can be used in a state ma-
chine description to manipulate defined OS interface sig-
nals, which in turn evoke the appropriate control functions
in a separate operating system interface module (OSIF). The
OSIF then either executes the requested function, if it can
be handled in hardware, or relays the OS call to the CPU by
means of an interrupt line and software-accessible registers.
On the CPU, a software thread called the delegate then exe-
cutes the actual OS call using the operating system’s native
API. Thus, a ReconOS hardware thread typically consists of
a OS synchronization state machine and an arbitrary number
of concurrent ”user logic” VHDL processes which carry out
the thread’s intended functionality.

When implemented in Xilinx FPGAs, ReconOS uses dy-
namic partial reconfiguration via the ICAP interface to re-
place hardware threads during run-time. The dynamically
reconfigurable region is divided into a fixed number of slots,
each of which is associated with an OSIF, as depicted in Fig-
ure 1. All signals between the OSIF and a hardware thread
inside a slot are routed through bus macros.

3. HARDWARE MULTITASKING TECHNIQUES

The unique properties of a hardware thread implemented in
an FPGA make it difficult to apply traditional multitask-
ing schemes to enable resource-sharing between different
threads of computation. A general-purpose microprocessor
has a fixed set of registers, the contents of which define the
state of the computational entity currently executing. This
makes it simple to suspend a computation and save its state

– it is sufficient to transfer the register contents of the pro-
cessor to memory. There is no need to store any information
about the actual processing units, since they are identical
for all computations performed on the device and cannot be
modified. Also, the code saving the state is usually executed
on the same processor as the suspended computation, and
thus has direct access to the state information.

In contrast, a computation mapped onto an FPGA typ-
ically does not have an easily identifiable location defining
its state. Instead, the state may be distributed across differ-
ent storage elements – flip-flops, shift registers, embedded
memories – throughout the FPGA’s fabric. In addition, not
all storage elements may be used by a given configuration;
indeed, not even all used storage elements may contribute
to a computation’s state. To make matters worse, there is
no easy way to store the contents of a given computation’s
storage elements into memory, since the logic connected to
the storage elements is dedicated to the computation itself.

3.1. Non-preemptive Multitasking

A simple solution is not to interrupt threads during their
execution at all, but letting them run from creation to ter-
mination. ReconOS supports non-preemptive multitasking
for hardware threads by providing create() and exit()
calls for hardware threads. When a hardware thread is cre-
ated, its delegate thread requests the configuration of the ap-
propriate bitstream to a free slot, if available. In the same
way, upon termination of a hardware thread, its delegate
thread marks the slot as free, which allows another thread
waiting for a slot to use it. Let us consider a simple example
of two hardware threads A and B with respective execu-
tion times of T (A) and T (B) and a reconfiguration time of
tl for either thread. When run on a single slot using non-
preemptive multitasking, the total run time is Tn(A, B) =
2tl + T (A) + T (B).

A significant disadvantage is that long-running subrou-
tines prevent other pending events from being handled, there-
by making the system appear non-responsive. Also, asyn-
chronous (i.e. blocking) operations – I/O, for example –
should not be invoked directly but be registered with the
event loop by providing a callback function, in order not to
delay other events unneccessarily. This breaks up the logical
structure of most applications. For these reasons, software
systems often use this technique in conjunction with pre-
emptive multitasking, which again has the aforementioned
drawbacks for reconfigurable hardware.

3.2. Cooperative Multitasking

Seen in this light, cooperative multitasking techniques, while
appearing unnecessarily handicapped in software-based sys-
tems given the easy availability of preemptive multitasking,
present an acceptable compromise when applied to reconfig-



urable hardware. Most of the problems described in Section
1 stem from the fact that in preemptive systems, a thread can
be interrupted at arbitrary points during its execution. If we
leave the actual decision to suspend a thread to the thread
itself, it can select what state information to store, since the
location and amount of that information is thread-specific,
decide how to store the state by providing access logic only
for the relevant state information, and choose when to sus-
pend itself, sensibly picking a point in time when state infor-
mation is minimal. The last point is especially valuable for
threads which frequently wait for data packages to process
– during the (typically blocking) wait periods, such a thread
often has minimal state information to be saved.

The logic requirements for the hardware thread in co-
operative multitasking environments, while easier to imple-
ment than mechanisms for preemptive multitasking, are still
higher than those for simple non-preemptive multitasking.
At the same time, cooperative multitasking offers better util-
isation of the reconfigurable resources than non-preemptive
techniques, provided that the threads actually relinquish con-
trol (i.e. yield) of their computational resources.

A thread typically signals its readiness to be suspended
by calling a yield() function. If no other threads are wait-
ing for a slot, this call would return immediately with no
consequences for the thread. Ideally, this is done just before
periods in which the thread would not perform any compu-
tation anyway. An excellent point for relinquishing control
are therefore blocking operating system calls.

In our previous example of threads A and B, we can
imagine that A actually does not use the whole period T (A)
for computations, but calls a function which blocks for tblock

until it returns. During this time, A yields the slot to other
waiting threads (in this case, B) after saving its state. This
allows the operating system to remove A, reconfigure the
waiting B into the (now free) slot, and execute it. After B
terminates and marks the slot as free, A is reconfigured, its
state restored, and its execution resumed. The total run-time
of both threads then amounts to Tc(A, B) = 2tl + T (A) +
tAs + tAr + max(tblock, tl + T (B)).

tAs
and tAr

are the times it takes to save and restore A’s
state, respectively. The cooperative multitasking approach
reduces the total run-time, provided that both T (B) > tAs +
tAr

and tblock > tAs
+ tAr

+ tl.

3.3. Implementation

In ReconOS, the cooperative scheduling technique is only
employed for hardware threads contending for slots on the
FPGA. Software threads running on the CPU still use pre-
emptive scheduling, since it is comparatively cheap to im-
plement in software. The task of managing the reconfig-
urable resources in ReconOS is shared between a hardware
thread’s delegate thread and a high-priority software thread,
the hardware scheduler, both of which are managed by the

OS’ preemptive scheduler. This approach provides excel-
lent portability, since it does not involve any changes to the
underlying software operating system.

We refer to the synthesized hardware circuit represent-
ing a specific thread’s functionality as a core. For every
available slot in the system, a hardware core is placed and
routed, resulting in nslots× ncores partial bitstreams. There
can be multiple hardware thread instantiations based on the
same core. The data structures modeling the relationships
between slots, hardware threads, cores and bitstreams are
shared between the delegates and the hardware scheduler.

Upon invocation, the hardware scheduler checks all hard-
ware threads’ and slots’ scheduling information. For any
hardware thread waiting for execution, it looks for a slot –
free or possibly with a yielding thread in it – to reconfigure
it into. In the event that there are no free slots, the scheduler
sends a request to yield to all running threads. This mecha-
nism allows hardware threads to easily check for other hard-
ware threads waiting to be executed, avoiding unnecessary
saving of state information. If a hardware thread is newly
started, its delegate requests its associated hardware core to
be loaded by setting a flag in its scheduling data structure
and notifying the hardware scheduler. After the correspond-
ing partial bitstream has been configured to the FPGA, the
delegate continues waiting for and serving OS call requests
from the hardware. If any of these calls carries a ’yielding’
flag set by the hardware, the thread notes this in its schedul-
ing data structure and notifies the scheduler. Upon comple-
tion of such a call, this flag is again cleared. Should the
thread’s hardware core have been replaced during the call,
the delegate thread requests the reloading of its core and
wakes up the scheduler. After reconfiguration, the hardware
thread’s state is restored and normal execution resumes.

4. EXPERIMENTS

To evaluate the cooperative scheduling technique, we have
measured the timing overheads of individual operations as
well as total application execution time of a prototype imple-
mentation. The prototypes employs a ReconOS/eCos oper-
ating system on a XC2VP30 FPGA platform using a single
reconfigurable slot and an operating frequency of 300 MHz
and 100 MHz for the CPU and the reconfigurable logic, re-
spectively.

Table 1 shows the execution times of individual opera-
tions that can be invoked by the hardware thread, as well the
overheads of thread control, state save/restore and reconfig-
uration operations performed by the operating system. The
results show that the overhead incurred by the scheduling
API remains acceptably small, particularly in the event that
no other hardware thread is waiting for a slot. Thus, aug-
menting a hardware thread with cooperative scheduling op-
erations will not have a significant impact on the perfor-



Table 1. Execution times of thread and OS operations
thread operation cycles
check yield() 0
flag yield() 0
thread yield() (no thread waiting) 4
thread yield() (threads waiting) 700
thread resume() 4
store/load state to/from local RAM (32 bit) 1
store state directly to main memory (32 bit) 26
load state directly from main memory (32
bit)

32

OS operation
thread initialization 1.76 ms
thread suspend 93.12 µs
thread resume 192.32 µs
state save (4096 bytes) 37.51 µs (104.1 MB/s)
state restore (4096 bytes) 45.19 µs (86.4 MB/s)
reconfiguration time (233 kBytes) 99,96 ms

tblock

tl

0 0.5 1 2 3 4 5 6 7 8 9

T (B)
tl

0
1

2

3
4
5

0.75

1.00

1.25

1.50

Tn

Tc

Fig. 2. Cooperative vs. non-preemptive multitasking

mance of the thread itself. However, the reconfiguration pro-
cess is by far the most expensive operation. For the reconfig-
urable regions (13× 17 CLBs) used in our prototype, which
require partial bitstreams of 233 kBytes each, the reconfigu-
ration time dwarfs any memory accesses for state saving or
restoring. While this time can be reduced by more than an
order of magnitude by improving the configuration port in-
terface core [6] or by minimizing the bitstream size [6][7], it
remains a limiting factor that determines what applications
can be feasibly implemented with any multitasking tech-
nique. We have run a range of benchmarks using the two
threads A and B from our previous example. T (A) has been
fixed it at 65.5 ms, while T (B) and tblock have been varied
from 0 to 500 ms / 1000 ms, respectively. The resulting per-
formance gains compared to the non-preemptive technique
are shown in Figure 2. As long as either T (B) or tblock

are shorter than the reconfiguration time, cooperative multi-
tasking executes slower than the sequential non-preemptive
techinique due to reconfiguration and scheduling overhead.
If both parameters rise above 100 ms, the performance is de-
termined by the relation between T (B) and tblock and peaks
when T (B) = tblock.

5. CONCLUSION

In this paper, we have shown cooperative multitasking tech-
niques to be a feasible compromise between computational
efficiency and implementation complexity when sharing re-
configurable resources among hardware threads. We have
extended the multithreaded programming model provided
by ReconOS to support cooperative scheduling techniques,
demonstrated its feasibility on a prototype and evaluated the
overheads incurred by the scheduling operations.

A cooperatively scheduled system can offer the benefit
of reduced synchronization complexity, as the threads can-
not be preempted in a critical area. This advantage is in
part neutralized in a truly concurrent execution environment
which again requires explicit synchronization to avoid race
conditions. As part of our ongoing work, we are investigat-
ing how to best integrate a cooperatively scheduled subset
of threads in a concurrently executing multithreaded sys-
tem. Additionally, we are working on integrating existing
improvements on the reconfiguration infrastructure in order
to implement more complex case studies that take advantage
of our multitasking environment.

This work was supported by the German Research Foun-
dation under project number PL 471/2-2.

6. REFERENCES

[1] A. L. D. Moura and R. Ierusalimschy, “Revisiting coroutines,”
ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 31, no. 2, pp. 1–31, 2009.

[2] H. Kalte and M. Porrmann, “Context Saving and Restoring for
Multitasking in Reconfiugrable Systems,” in 15th IEEE Int.
Conf. on Field Programmable Logic and Applications (FPL),
2005, pp. 223–228.

[3] S. Jovanovic, C. Tanougast, and S. Weber, “A Hardware Pre-
emptive Multitasking Mechanism Based on Scan-path Reg-
ister Structure for FPGA-based Reconfigurable Systems,” in
2nd NASA/ESA Conference on Adaptive Hardware and Sys-
tems (AHS), 2007, pp. 358–364.

[4] E. Luebbers and M. Platzner, “Multithreaded Programming for
Reconfigurable Computers,” ACM Trans. Embedded Comput-
ing Systems (TECS), 2009, to appear.

[5] ——, “ReconOS: An RTOS supporting Hard- and Software
Threads,” in 17th IEEE Int. Conf. on Field Programmable
Logic and Applications (FPL), 2007.

[6] C. Claus, F. Muller, J. Zeppenfeld, and W. Stechele, “A
new framework to accelerate Virtex-II Pro dynamic partial
self-reconfiguration,” in IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2007, pp. 1–7.

[7] M. Rullmann, S. Siegel, and R. Merker, “Optimization of
reconfiguration overhead by algorithmic transformations and
hardware matching,” in 19th Int. IEEE Parallel and Dis-
tributed Processing Symposium (IPDPS), 2005, pp. 151–156.


