
A Portable Abstraction Layer for
Hardware Threads

Enno Lübbers and Marco Platzner
Computer Engineering Group
University of Paderborn

{enno.luebbers, platzner}@upb.de

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Design of CPU/FPGA Systems

2

CPU FPGA

hardware
module

software
application

 hardware modules typically integrated as slave coprocessors
 hardware/software boundary explicit
 tedious and error-prone to program
 portability issues

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Design of CPU/FPGA Systems

2

CPU FPGA

hardware
module

software
application

bus

registerdriver register

 hardware modules typically integrated as slave coprocessors
 hardware/software boundary explicit
 tedious and error-prone to program
 portability issues

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Multithreaded Programming

3

application

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Multithreaded Programming

3

application

 multithreaded programming model

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Multithreaded Programming

3

thread thread threadthread

thread

 multithreaded programming model

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Multithreaded Programming

3

thread thread threadthread

thread

operating system

 multithreaded programming model

software
thread

software
thread

software
thread

hardware
thread

hardware
thread

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Multithreaded Programming

3

CPU FPGA

operating system

 multithreaded programming model
■ extended to reconfigurable hardware (ReconOS)

software
thread

software
thread

software
thread

hardware
thread

hardware
thread

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Multithreaded Programming

3

CPU FPGA

OS
interface

OS kernel
OS

interface

 multithreaded programming model
■ extended to reconfigurable hardware (ReconOS)

software
thread

software
thread

software
thread

hardware
thread

hardware
thread

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Multithreaded Programming

3

CPU FPGA

OS
interface

OS kernel
OS

interface

 multithreaded programming model
■ extended to reconfigurable hardware (ReconOS)
■ provides transparent synchronization and communication b/w threads

software
thread

software
thread

software
thread

hardware
thread

hardware
thread

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Multithreaded Programming

3

CPU FPGA

OS
interface

OS kernel
OS

interface

 multithreaded programming model
■ extended to reconfigurable hardware (ReconOS)
■ provides transparent synchronization and communication b/w threads
■ operating system provides low-level synchronization and

communication

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Application Domains

4

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Application Domains

 multithreaded programming model applicable to several
application domains, e.g.

4

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Application Domains

 multithreaded programming model applicable to several
application domains, e.g.

 reconfigurable embedded computing
■ efficient exploitation of fine-grained parallelism with tight constraints

(memory, area, power, processor performance)
■ demand for easy design space exploration regarding HW/SW partitioning
■ short reaction times, possibly real-time requirements

4

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Application Domains

 multithreaded programming model applicable to several
application domains, e.g.

 reconfigurable embedded computing
■ efficient exploitation of fine-grained parallelism with tight constraints

(memory, area, power, processor performance)
■ demand for easy design space exploration regarding HW/SW partitioning
■ short reaction times, possibly real-time requirements

 reconfigurable high-performance computing
■ transparent communication and synchronization in heterogeneous execution

environments (e.g. CPU nodes + FPGA accelerators)
■ exploitation of both fine-grained and thread-level parallelism, possibly across

multiple machines

4

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Application Domains

 multithreaded programming model applicable to several
application domains, e.g.

 reconfigurable embedded computing
■ efficient exploitation of fine-grained parallelism with tight constraints

(memory, area, power, processor performance)
■ demand for easy design space exploration regarding HW/SW partitioning
■ short reaction times, possibly real-time requirements

 reconfigurable high-performance computing
■ transparent communication and synchronization in heterogeneous execution

environments (e.g. CPU nodes + FPGA accelerators)
■ exploitation of both fine-grained and thread-level parallelism, possibly across

multiple machines

➟ show applicability of ReconOS approach across different host
operating systems and CPU/FPGA architectures

4

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Overview

 motivation

 ReconOS abstraction layer
■ programming model
■ hardware architecture
■ hardware threads
■ OS interface & delegate threads

 host OS implementations
■ ReconOS/eCos
■ ReconOS/Linux

 experimental results

 conclusion

5

shared
memory

SEM_NEW

SEM_READY

MBOX_DATA

MBOX_IN1

MBOX_IN2 MBOX_OUT

THREAD_A

THREAD_B THREAD_C

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Programming Model

 applications are
divided into threads

 threads communicate
via operating system
objects
■ semaphores
■ mailboxes
■ shared memory
■ ...

6

shared
memory

SEM_NEW

SEM_READY

MBOX_DATA

MBOX_IN1

MBOX_IN2 MBOX_OUT

THREAD_A

THREAD_B THREAD_C

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Programming Model

 applications are
divided into threads

 threads communicate
via operating system
objects
■ semaphores
■ mailboxes
■ shared memory
■ ...

6

software (POSIX, C) hardware (ReconOS, VHDL)
sem_post() reconos_sem_post()

pthread_mutex_lock() reconos_mutex_lock()
mq_send() reconos_mbox_put()

value = *ptr reconos_read()
pthread_exit() reconos_thread_exit()

examples for API functions used by threads

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Hardware Architecture

 based on CoreConnect bus topology
 system CPU runs OS kernel and software threads
 hardware threads are synthesized to FPGA fabric
■ connected to OS kernel via OS interface modules and buses

7

system buses (PLB, DCR)

CPU
OS

kernel

memory
controller

external
memory

I/O controller

interrupt
controller

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Hardware Architecture

 based on CoreConnect bus topology
 system CPU runs OS kernel and software threads
 hardware threads are synthesized to FPGA fabric
■ connected to OS kernel via OS interface modules and buses

7

system buses (PLB, DCR)

CPU

software
thread

software
thread

OS
kernel

memory
controller

external
memory

I/O controller

interrupt
controller

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Hardware Architecture

 based on CoreConnect bus topology
 system CPU runs OS kernel and software threads
 hardware threads are synthesized to FPGA fabric
■ connected to OS kernel via OS interface modules and buses

7

system buses (PLB, DCR)

CPU

software
thread

software
thread

hardware
thread

hardware
thread

hardware
thread

OS
kernel

memory
controller

external
memory

I/O controller

interrupt
controller

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Hardware Architecture

 based on CoreConnect bus topology
 system CPU runs OS kernel and software threads
 hardware threads are synthesized to FPGA fabric
■ connected to OS kernel via OS interface modules and buses

7

system buses (PLB, DCR)

CPU

software
thread

software
thread

hardware
thread

hardware
thread

hardware
thread

OS
kernel

memory
controller

external
memory

I/O controller

OS interface OS interface OS interface

interrupt
controller

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 8

ReconOS API for Hardware Threads

■ VHDL function library
■ used similar to software API
■ may only be used inside OS

synchronization state machine

IDLE READ

POST

WRITE

RUN

i_osif

o_osif

clk

reset

transitions occur only when

OS interface is ready

user logic

OS synchronization state machine

hardware thread

/ sem_wait

(C_SEM_A)

done = '1' /

run <= '0'

done = '0'/

run <= '1' / shm_read()

/ shm_write()

/ sem_post

(C_SEM_B)

run done

local
RAM

O
S

 I
n

te
r
fa

c
e

64 bit PLB (memory bus)

i_
o
s
if

o
_
o
s
if

user logic

hardware thread

local
RAM

OS interface
to interrupt
controller

32 Bit DCR (control bus)

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 9

OS Interface and Delegate Threads

 OS interface
■ processes requests from HW thread
■ relays OS object interactions to CPU
■ executes memory accesses
■ provides dedicated FIFO channels

64 bit PLB (memory bus)

i_
o
s
if

o
_
o
s
if

user logic

hardware thread

local
RAM

OS interface
to interrupt
controller

32 Bit DCR (control bus)

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 9

OS Interface and Delegate Threads

 OS interface
■ processes requests from HW thread
■ relays OS object interactions to CPU
■ executes memory accesses
■ provides dedicated FIFO channels

 delegate thread
■ associated with every hardware

thread
■ calls kernel functions on behalf

of hardware thread

 provide stable API on different OS‘s and platforms
■ OS interface manages low-level communication to CPU and memory
■ delegate translates HW thread requests to OS kernel API

64 bit PLB (memory bus)

i_
o
s
if

o
_
o
s
if

user logic

hardware thread

local
RAM

OS interface
to interrupt
controller

32 Bit DCR (control bus)

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 9

OS Interface and Delegate Threads

 OS interface
■ processes requests from HW thread
■ relays OS object interactions to CPU
■ executes memory accesses
■ provides dedicated FIFO channels

 delegate thread
■ associated with every hardware

thread
■ calls kernel functions on behalf

of hardware thread

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Overview

 motivation

 ReconOS abstraction layer
■ programming model
■ hardware architecture
■ hardware threads
■ OS interface & delegate threads

 host OS implementations
■ ReconOS/eCos
■ ReconOS/Linux

 experimental results

 conclusion

10

DCR bus

Hardware
Thread

OS
Interface

Interrupt
Controller

Delegate
Thread

Interrupt
Service
Routine

Deferred
Service
Routine

C
P
U

eCos Kernel

! "

#

$%

&
F
P
G
A

E.Lübbers & M.Platzner, University of Paderborn

OS Call Sequence (eCos)

 eCos
■ configurable, small-footprint operating system for embedded domain
■ all code executes in kernel mode; simple hardware access possible

 OS call sequence
■ hardware thread initiates request; OS interface raises interrupt
■ delegate is synchronized to interrupts through semaphores
■ delegate thread is woken up and retrieves OS call and parameters

11

E.Lübbers & M.Platzner, University of Paderborn

OS Call Sequence (Linux)

 Linux
■ flexible and widely used OS for embedded and HPC domain
■ no direct hardware access possible from Linux user space; needs driver

 OS call sequence
■ hardware thread initiates request; OS interface raises interrupt
■ delegate is synchronized to interrupts through blocking filesystem accesses
■ delegate thread is woken up and retrieves OS call and parameters

12

Hardware
Thread

OS
Interface

Interrupt
Controller

Delegate
Thread

C
P
U

! "

#

F
P
G
A

Interrupt
Handler/dev/osif0

$

%

OSIF driver

Linux Kernel

DCR bus

E.Lübbers & M.Platzner, University of Paderborn

Tool Flow

13

.c .vhd

reference design

hardware
threads

FPGA

software
threads

CPU buses peri-
pherals

E.Lübbers & M.Platzner, University of Paderborn

Tool Flow

13

.c .vhd

reference design

hardware
threads

FPGA

software
threads

platform
generation

synthesis /
place & route

.bit

CPU buses peri-
pherals

E.Lübbers & M.Platzner, University of Paderborn

Tool Flow

13

.c .vhd

reference design

hardware
threads

FPGA

software
threads

platform
generation

synthesis /
place & route

.bit

CPU buses peri-
pheralsReconOS/

eCos
(static library)

compile &
link

.elf

OSIF
driver

delegate
threads

eCos

E.Lübbers & M.Platzner, University of Paderborn

Tool Flow

13

.c .vhd

reference design

hardware
threads

FPGA

software
threads

platform
generation

synthesis /
place & route

.bit

CPU buses peri-
pheralsReconOS/

eCos
(static library)

compile &
link

.elf

OSIF
driver

delegate
threads

eCos

compile &
link

libreconos
(static library)

.elf

linux.elf

OSIF
driver

delegate
threads

Linux

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Overview

 motivation

 ReconOS abstraction layer
■ programming model
■ hardware architecture
■ hardware threads
■ OS interface & delegate threads

 host OS implementations
■ ReconOS/eCos
■ ReconOS/Linux

 experimental results

 conclusion

14

0,01

0,1

1

10

100

1000

10000

µs

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 15

OS Call Overheads

 synthetic hardware and software
threads
■ semaphore and mutex processing time

(post → wait / unlock → lock)

 executed on three prototypes
■ eCos/PPC

 XC2VP30
 PowerPC405 @300MHz
 HW threads & bus @100MHz

■ Linux/PPC
 XC2VP30
 PowerPC405 @300MHz
 HW threads & bus @100MHz

■ Linux/MicroBlaze
 XC4VSX35
 MicroBlaze 4.0 @100Mhz
 HW threads & bus @100MHz

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Application Case Study

 sort application
■ sorts an array of integers (1MB) using a combination of bubble sort and

merge sort
■ sort thread can be executed either in hardware or software

➟ OS call overhead not a major factor in overall performance

16

sort thread

sort sort sort sort

merge merge

merge

unsorted data

sorted data

sort thread
(SW or HW)

merge thread
(SW)

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Conclusion & Outlook

 we extended the established multithreaded programming model
to reconfigurable hardware

 unified set of abstractions for hard- and software threads
provides portability across different host OS‘s and CPU/FPGA
architectures

 the additional abstraction layer shows acceptable performance
in benchmarks and larger case studies

 future work
■ implementation on FPGA accelerators for high-performance computing
■ extension of OS scheduler to allow hardware thread scheduling using partial

reconfiguration

17

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Overview

 motivation

 ReconOS abstraction layer
■ programming model
■ hardware architecture
■ hardware threads
■ OS interface & delegate threads

 host OS implementations
■ ReconOS/eCos
■ ReconOS/Linux

 experimental results

 conclusion

18

Thank you

www.reconos.de

http://www.reconos.de
http://www.reconos.de

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 19

Thank you

www.reconos.de

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 20

command decoder
23%

bus slave registers
12%

fifo manager
5%

PLB IPIF
59%

OS Overheads (Area)

 total OSIF slice count: 1213 slices
■ most of this taken up by PLB IPIF logic

PLB IPIF
fifo manager
bus slave registers
command decoder
bus master control

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 21

Supported OS Calls

 Semaphores (counting and binary)
■ reconos_semaphore_post()
■ reconos_semaphore_wait()

 Mutexes
■ reconos_mutex_lock()
■ reconos_mutex_trylock()
■ reconos_mutex_unlock()
■ reconos_mutex_release()

 Condition Variables
■ reconos_cond_wait()
■ reconos_cond_signal()
■ reconos_cond_broadcast()

 Mailboxes
■ reconos_mbox_get()
■ reconos_mbox_tryget()
■ reconos_mbox_put()
■ reconos_mbox_tryput()

 Memory access
■ reconos_read()
■ reconos_write()
■ reconos_read_burst()
■ reconos_write_burst()

handled in
software

(via delegate
thread)

handled in
hardware

(via system
bus / point-

to-point
links)

basic synchronization
primitives

synchronize access to
mutual exclusive operations

(critical sections)

allow waiting until arbitrary
conditions are satisfied

CPU-independent access
to the entire system address

space (memory and peripherals)

message passing primitives
(blocking and not blocking)

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 22

ReconOS Software API (POSIX)

mqd_t my_mbox;
sem_t my_sem;

pthread_t thread;
pthread_attr_t thread_attr;

...

pthread_attr_init(&thread_attr);

pthread_create(
 &thread, // thread object
 &thread_attr, // attributes
 thread_entry, // entry point
 (void *) data // entry data
);

mqd_t my_mbox;
sem_t my_sem;
reconos_res_t thread_resources[2] = {
	 { &my_mbox, POSIX_MQD_T },
	 { &my_sem, POSIX_SEM_T }
};

rthread thread;
pthread_attr_t thread_swattr;
rthread_attr_t thread_hwattr;
...

pthread_attr_init(&thread_swattr);
rthread_attr_init(&thread_hwattr);
rthread_attr_setslotnum(&thread_hwattr, 0);
rthread_attr_setresources(&thread_hwattr,
 thread_resources, 2);

rthread_create(
 &thread, // thread object
 &thread_swattr, // software attributes
 &thread_hwattr, // hardware attributes
 (void *) data // entry data
);

 standard POSIX thread creation  ReconOS hardware thread creation

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

23

HW
thread

command

data

busy/block

step

data

OSIF

step

HW thread OSIFstate = A CPU

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

23

HW
thread

command

data

busy/block

step

data

OSIF

step

cmd + data(0)

reconos call

state = B step = 0

HW thread OSIFstate = A CPU

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

23

HW
thread

command

data

busy/block

step

data

OSIF

step

cmd + data(0)

reconos call

state = B step = 0

cmd + data(1)

busy/block

state = B step = 1

HW thread OSIFstate = A CPU

function
call

state = B step = 1

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

23

HW
thread

command

data

busy/block

step

data

OSIF

step

cmd + data(0)

reconos call

state = B step = 0

cmd + data(1)

busy/block

state = B step = 1

HW thread OSIFstate = A CPU

function
call

state = B step = 1

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

23

HW
thread

command

data

busy/block

step

data

OSIF

step

cmd + data(0)

reconos call

state = B step = 0

cmd + data(1)

busy/block

state = B step = 1

HW thread OSIFstate = A CPU

unblock +
return value

call finished

state = B step = 2

return
value

function
call

state = B step = 1

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08

Multi-Cycle Commands

 transfer of multiple
parameters and
return values with a
single VHDL call

 distributes execution
of an FSM state
across multiple clock
cycles

23

HW
thread

command

data

busy/block

step

data

OSIF

step

cmd + data(0)

reconos call

state = B step = 0

cmd + data(1)

busy/block

state = B step = 1

HW thread OSIFstate = A CPU

state = C step = 0

unblock +
return value

call finished

state = B step = 2

return
value

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 24

Toolchain

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 24

Toolchain

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 24

Toolchain

 software threads are written in C
u using the eCos software API

 hardware threads are written in
VHDL

u using the ReconOS VHDL API

 architecture generation
u automatically inserts OS interfaces

and hardware threads into Xilinx
EDK platform templates

u configures and builds static eCos
library

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 24

Toolchain

 software threads are written in C
u using the eCos software API

 hardware threads are written in
VHDL

u using the ReconOS VHDL API

 architecture generation
u automatically inserts OS interfaces

and hardware threads into Xilinx
EDK platform templates

u configures and builds static eCos
library

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 24

Toolchain

 software threads are written in C
u using the eCos software API

 hardware threads are written in
VHDL

u using the ReconOS VHDL API

 architecture generation
u automatically inserts OS interfaces

and hardware threads into Xilinx
EDK platform templates

u configures and builds static eCos
library

 eCos extensions
u hardware thread object encapsulating delegate thread and OS interface “driver”
u profiling support to track the state of the hardware threads' OS synchronization state

machines

E.Lübbers & M.Platzner, University of Paderborn 25

 three threads
■ capture image from Ethernet
■ apply LaPlacian filter
■ display image on VGA monitor

 threads communicate through
shared memory
■ image resolution: 320x240 pixels, 8

bit greyscale
■ image data organized into blocks

(e.g. 40 lines = 1 block)
■ a block is protected by two

semaphores
 “ready” semaphore: data can be safely

written into this block
 “new” semaphore: new data is available

in this block

Case Study - Image Processing Filter

0

7,5

15,0

22,5

30,0

3 5

25,425,5
23,223,5

18,619,0

8,5

16,2
fra

m
es

/s

window size

SW-SW-SW SW-HW-SW
SW-HW-HW SW-HW-HW double buffered

E.Lübbers & M.Platzner, University of Paderborn 25

 three threads
■ capture image from Ethernet
■ apply LaPlacian filter
■ display image on VGA monitor

 threads communicate through
shared memory
■ image resolution: 320x240 pixels, 8

bit greyscale
■ image data organized into blocks

(e.g. 40 lines = 1 block)
■ a block is protected by two

semaphores
 “ready” semaphore: data can be safely

written into this block
 “new” semaphore: new data is available

in this block

Case Study - Image Processing Filter

SW-SW-SW SW-HW-SW
SW-HW-HW SW-HW-HW double buffered

E.Lübbers & M.Platzner, University of Paderborn 26

0

7,5

15,0

22,5

30,0

3 5

25,425,5

23,223,5

18,619,0

8,5

16,2

fra
m

es
/s

window size

SW-SW-SW
SW-HW-SW
SW-HW-HW
SW-HW-HW double buffered

Case Study - Results

E.Lübbers & M.Platzner, University of Paderborn 26

SW-SW-SW
SW-HW-SW
SW-HW-HW
SW-HW-HW double buffered

Case Study - Results

64 bit PLB (memory bus)

i_
o

s
if

o
_

o
s
if

user logic

hardware thread

local
RAM

PLB slave
attachment

bus
master

controller

command decoder

O
S

 in
te

r
fa

c
e

to interrupt
controller

DCR slave
attachment

32 Bit DCR (control bus)

FIFO
manager

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 27

OS Interface

64 bit PLB (memory bus)

i_
o

s
if

o
_

o
s
if

user logic

hardware thread

local
RAM

PLB slave
attachment

bus
master

controller

command decoder

O
S

 in
te

r
fa

c
e

to interrupt
controller

DCR slave
attachment

32 Bit DCR (control bus)

FIFO
manager

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 27

OS Interface

 processes requests from
hardware thread
■ handles blocking and resuming of

hardware thread

64 bit PLB (memory bus)

i_
o

s
if

o
_

o
s
if

user logic

hardware thread

local
RAM

PLB slave
attachment

bus
master

controller

command decoder

O
S

 in
te

r
fa

c
e

to interrupt
controller

DCR slave
attachment

32 Bit DCR (control bus)

FIFO
manager

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 27

OS Interface

 processes requests from
hardware thread
■ handles blocking and resuming of

hardware thread

 relays OS object interactions to
CPU
■ DCR interface with bus-addressable

registers
■ dedicated interrupt

64 bit PLB (memory bus)

i_
o

s
if

o
_

o
s
if

user logic

hardware thread

local
RAM

PLB slave
attachment

bus
master

controller

command decoder

O
S

 in
te

r
fa

c
e

to interrupt
controller

DCR slave
attachment

32 Bit DCR (control bus)

FIFO
manager

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 27

OS Interface

 processes requests from
hardware thread
■ handles blocking and resuming of

hardware thread

 relays OS object interactions to
CPU
■ DCR interface with bus-addressable

registers
■ dedicated interrupt

 executes memory accesses
■ PLB master interface
■ direct access to entire system’s

address space (memory and
peripherals)

64 bit PLB (memory bus)

i_
o

s
if

o
_

o
s
if

user logic

hardware thread

local
RAM

PLB slave
attachment

bus
master

controller

command decoder

O
S

 in
te

r
fa

c
e

to interrupt
controller

DCR slave
attachment

32 Bit DCR (control bus)

FIFO
manager

F
IF

O

F
IF

O

to/from other threads

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 27

OS Interface

 processes requests from
hardware thread
■ handles blocking and resuming of

hardware thread

 relays OS object interactions to
CPU
■ DCR interface with bus-addressable

registers
■ dedicated interrupt

 executes memory accesses
■ PLB master interface
■ direct access to entire system’s

address space (memory and
peripherals)

 dedicated FIFO channels
■ provide high-throughput hardware

support for message passing

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 28

Delegate Threads

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 28

 basic mechanism
■ a delegate thread in software is associated with every hardware thread
■ the delegate thread calls the OS kernel on behalf of the hardware thread
■ all kernel responses are relayed back to the hardware thread

Delegate Threads

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 28

 basic mechanism
■ a delegate thread in software is associated with every hardware thread
■ the delegate thread calls the OS kernel on behalf of the hardware thread
■ all kernel responses are relayed back to the hardware thread

 advantages
■ no modification of the kernel required
■ extremely flexible
■ transparent to kernel and

other threads

Delegate Threads

E.Lübbers & M.Platzner, University of Paderborn FPL ‘08 28

 basic mechanism
■ a delegate thread in software is associated with every hardware thread
■ the delegate thread calls the OS kernel on behalf of the hardware thread
■ all kernel responses are relayed back to the hardware thread

 advantages
■ no modification of the kernel required
■ extremely flexible
■ transparent to kernel and

other threads

 portability
■ delegate acts as protocol
converter between HW thread
and OS kernel

■ only the delegate thread code
needs to be changed to
support a new OS API

Delegate Threads

