A Portable Abstraction Layer for
Hardware Threads

Enno Lubbers and Marco Platzner
Computer Engineering Group
University of Paderborn

{enno.luebbers, platzner}Qupb.de

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Design of CPU/FPGA Systems

= hardware modules typically integrated as slave coprocessors
= hardware/software boundary explicit

= tedious and error-prone to program

= portability issues

.
software hardware

application module
.))

E.LUbbers & M.Platzner, University of Paderborn

Design of CPU/FPGA Systems

= hardware modules typically integrated as slave coprocessors
= hardware/software boundary explicit

= tedious and error-prone to program

= portability issues

>
software hardware

application module
|/]

o L/

driver register — register

FPGA

E.LUbbers & M.Platzner, University of Paderborn

Multithreaded Programming

“ h

application

- /

E.LUbbers & M.Platzner, University of Paderborn

Multithreaded Programming

= multithreaded programming model

“ A
application

N v

E.LUbbers & M.Platzner, University of Paderborn

Multithreaded Programming

= multithreaded programming model

th read\ /thread @ @

thread

E.LUbbers & M.Platzner, University of Paderborn

Multithreaded Programming

= multithreaded programming model

th read\ /thread thread thread

thread

operating system

E.LUbbers & M.Platzner, University of Paderborn

Multithreaded Programming

= multithreaded programming model
= extended to reconfigurable hardware (ReconOS)

thread thread thread thread

softwali software hardware hardware
ftw

operating system

\

| cPUMEE

E.LUbbers & M.Platzner, University of Paderborn

Multithreaded Programming

= multithreaded programming model
= extended to reconfigurable hardware (ReconOS)

software software
thread thread
ftw

OS kernel

\

o

E.LUbbers & M.Platzner, University of Paderborn

-

hardware
thread

Interface

/

-

hardware
thread

Interface

/

FPGA

Multithreaded Programming

® multithreaded programming model
= extended to reconfigurable hardware (ReconOS)
= provides transparent synchronization and communication b/w threads

hardware hardware
thread thread

thread

\

thread

software} Goftware
ftw

thrzad

OS kernel

~

[

CPU

,

E.LUbbers & M.Platzner, University of Paderborn

-

OS
Interface

/

-

OS
interface

/

FPGA

Multithreaded Programming

® multithreaded programming model
= extended to reconfigurable hardware (ReconOS)
= provides transparent synchronization and communication b/w threads

= operating system provides low-level synchronization and
communication

software) Goftware
ftw

thread

\

thread

thrzad

OS kernel

~

[

CPU

,

E.LUbbers & M.Platzner, University of Paderborn

hardware
thread

-

OS
Interface

/

-

hardware
thread

OS
interface

/

FPGA

Application Domains

E.LUbbers & M.Platzner, University of Paderborn

Application Domains

® multithreaded programming model applicable to several
application domains, e.g.

E.LUbbers & M.Platzner, University of Paderborn

Application Domains

= multithreaded programming model applicable to several
application domains, e.g.

= reconfigurable embedded computing

= efficient exploitation of fine-grained parallelism with tight constraints
(memory, area, power, processor performance)

= demand for easy design space exploration regarding HW/SW partitioning
= short reaction times, possibly real-time requirements

E.LUbbers & M.Platzner, University of Paderborn

Application Domains

= multithreaded programming model applicable to several
application domains, e.g.

= reconfigurable embedded computing

= efficient exploitation of fine-grained parallelism with tight constraints
(memory, area, power, processor performance)

= demand for easy design space exploration regarding HW/SW partitioning
= short reaction times, possibly real-time requirements

= reconfigurable high-performance computing

= transparent communication and synchronization in heterogeneous execution
environments (e.g. CPU nodes + FPGA accelerators)

= exploitation of both fine-grained and thread-level parallelism, possibly across
multiple machines

E.LUbbers & M.Platzner, University of Paderborn

Application Domains

= multithreaded programming model applicable to several
application domains, e.g.

= reconfigurable embedded computing

= efficient exploitation of fine-grained parallelism with tight constraints
(memory, area, power, processor performance)

= demand for easy design space exploration regarding HW/SW partitioning
= short reaction times, possibly real-time requirements

= reconfigurable high-performance computing

= transparent communication and synchronization in heterogeneous execution
environments (e.g. CPU nodes + FPGA accelerators)

= exploitation of both fine-grained and thread-level parallelism, possibly across
multiple machines

=) show applicability of ReconOS approach across different host
operating systems and CPU/FPGA architectures

E.LUbbers & M.Platzner, University of Paderborn

Overview

B motivation

= ReconOS abstraction layer
= programming model
= hardware architecture
= hardware threads
= OS interface & delegate threads

= host OS implementations
= ReconOS/eCos
= ReconOS/Linux

® experimental results

® conclusion

E.LUbbers & M.Platzner, University of Paderborn

Programming Model

THREAD_A

= applications are
. . . hared 4
divided into threads —> | > rﬁefnrﬁry |

= threads communicate "
via operating system SEM_NEW
objects
= semaphores

= mailboxes
= shared memory L |

SEM_READY

L

MBOX_IN2 \/ MBOX_DATA \/ MBOX_OUT

" .. THREAD_B THREAD_C

E.LUbbers & M.Platzner, University of Paderborn

Programming Model

THREAD_A

= applications are
. . . ‘ hared
divided into threads — | g TN

. MBOX_IN1 |
® threads communicate - \-«‘//

via operating system SEM_NEW
objects

= semaphores

= mailboxes

= shared memory

SEM_READY

MBOX_IN2 MBOX_DATA MBOX_OUT
" .. THREAD_B THREAD_C

examples for API functions used by threads

software (POSIX, C) hardware (ReconOS, VHDL)

sem post () reconos sem post ()

pthread mutex lock() reconos mutex lock ()
mg send () reconos mbox put ()

value = *ptr reconos read()

pthread exit () reconos thread exit ()

E.LUbbers & M.Platzner, University of Paderborn FPL ‘08

Hardware Architecture

= based on CoreConnect bus topology
= system CPU runs OS kernel and software threads

= hardware threads are synthesized to FPGA fabric
= connected to OS kernel via OS interface modules and buses

- - /0 controller Crgﬁ?;gr <|‘:|,> renxet(rer:gal
CPU ry
OS
kernel
system buses (PLB, DCR)

T

interrupt
controller

E.LUbbers & M.Platzner, University of Paderborn

Hardware Architecture

= based on CoreConnect bus topology
= system CPU runs OS kernel and software threads

= hardware threads are synthesized to FPGA fabric
= connected to OS kernel via OS interface modules and buses

; | voconmie | | T (0 s
CPU

+ kernel
@ @ system buses (PLB, DCR)

software
thread
T /
interrupt
controller

E.LUbbers & M.Platzner, University of Paderborn

Hardware Architecture

= based on CoreConnect bus topology
= system CPU runs OS kernel and software threads

= hardware threads are synthesized to FPGA fabric
= connected to OS kernel via OS interface modules and buses

P a [I/O controller} L Crgﬁ?;gr }< > %X;renrggl
CPU
~ kernel
ssr:‘:\év @ @ system buses (PLB, DCR)

ar
ad
software
thread
T 4
interrupt
controller

hardware hardware hardware
thread thread thread

E.LUbbers & M.Platzner, University of Paderborn

Hardware Architecture

= based on CoreConnect bus topology
= system CPU runs OS kernel and software threads

= hardware threads are synthesized to FPGA fabric
= connected to OS kernel via OS interface modules and buses

- - [I/O controller} L Crgﬁ?;gr }< > %X;(zggl
CPU
~ kernel
Sfr::\év @ @ system buses (PLB, DCR)

OS interface OS interface OS interface

ar
ad
U I
thread
T 4

mtetrrulf)t
controller «—

hardware hardware hardware
thread thread thread

E.LUbbers & M.Platzner, University of Paderborn

ReconOS API for Hardware Threads

R O S

osif_fsm: process(clk, reset)
begin
if (reset = '1’) then
state <= IDLE;
run <= '0°;
|reconos reset|(o_osif, i_osif);
elsif rising_edge(clk) then
|reconos_begin(o_osif, i_osif);
if| reconos_ready|(i_osif) then
case stafe Is
when IDLE =>
| reconos_sem_wait/(o_osif , i_osif , CSEMA);
state <= READ;

when READ =>

l[reconos_shm_read_burst| o_osif, i_osif,
local_ address
global_ address);

state <= RUN;

when RUN =>
run <= '17;
if done = 1’ then
run <= '07;
state <= WRITE;
end if;

when WRITE =>

Ireconos shm_write._ burstl(o osif, i_osif,
local_ address
global_address);

state <= POST;
when POST =>

| reconos_sem. gos {o osif, i_osif, C.SEMB);
state <= ’

when others => null;
end case;
end if;
end if;
end process;

E.LUbbers & M.Platzner, University of Paderborn

OS Interface

= VVHDL function library
= used similar to software API

= may only be used inside OS
synchronization state machine

~- hardware thread

OS synchronization state machine

/ sem_wait
(C_SEM_A)

done ="'0"
run <=1
-\
N

|
,‘i

done=""/

run <= '0' -7

|
I / shm_read()

/ shm_write()

transitions occur only when
OS interface is ready

user logic

FPL ‘08

- e e e e e e e e e e e e e e = e e = e o e = e - e = = = e = = - = = = e = = = = =

OS Interface and Delegate Threads

64 bit PLB (memory bus) 32 Bit DCR (control bus)

~_ ~_

OS interface

to interrupt
controller

user logic

hardware thread to/from other threads

m OS interface

processes requests from HW thread
relays OS object interactions to CPU
executes memory accesses
provides dedicated FIFO channels

E.LUbbers & M.Platzner, University of Paderborn

OS Interface and Delegate Threads

64 bit PLB (memory bus) 32 Bit DCR (control bus)

~_ ~_

OS interface

to interrupt
controller

(@)
(@]
2]

.)

Q
4Y

V4

user logic

hardware thread to/from other threads

m OS interface

processes requests from HW thread
relays OS object interactions to CPU
executes memory accesses
provides dedicated FIFO channels

E.LUbbers & M.Platzner, University of Paderborn

delegate
thread '

1 ﬁhw thread
E

RTOS kernel

® delegate thread

= associated with every hardware
thread

= calls kernel functions on behalf
of hardware thread

OS Interface and Delegate Threads

64 bit PLB (memory bus) 32 Bit DCR (control bus)

~_ ~_

OS interface
delegate

to interrupt

controller thread

{ th thread

\/
RTOS kernel

E==Si RO

hardware thread to/from other threads

= OS interface ® delegate thread

= processes requests from HW thread = associated with every hardware

= relays OS object interactions to CPU thread |
= executes memory accesses = calls kernel functions on behalf

_ _ of hardware thread
= provides dedicated FIFO channels

= provide stable API on different OS's and platforms
= OS interface manages low-level communication to CPU and memory
= delegate translates HW thread requests to OS kernel API

E.LUbbers & M.Platzner, University of Paderborn FPL ‘08

Overview

B motivation

m ReconOS abstraction layer
= programming model
= hardware architecture
= hardware threads
= OS interface & delegate threads

®= host OS implementations
= ReconOS/eCos
= ReconOS/Linux

® experimental results

® conclusion

E.LUbbers & M.Platzner, University of Paderborn

OS Call Sequence (eCos)
@

--p-

Hardware
Thread

OS Interrupt
Interface Controller

DCR bus

eCos Kernel

AN
. L}
F@
) 4 -
Deferred Interrupt

Service Service
Routine Routine

Delegate
Thread

= configurable, small-footprint operating system for embedded domain
= all code executes in kernel mode; simple hardware access possible

= OS call sequence
= hardware thread initiates request; OS interface raises interrupt
= delegate is synchronized to interrupts through semaphores
= delegate thread is woken up and retrieves OS call and parameters

E.LUbbers & M.Platzner, University of Paderborn

OS Call Sequence (Linux)

Hardware _9 OS Interrupt
Thread Interface Controller

4’x

DCR bus

Handler

@ [Interrupt

‘| OSIF driver
| Linux Kernel

Delegate

® Linux
= flexible and widely used OS for embedded and HPC domain
= no direct hardware access possible from Linux user space; needs driver

= OS call sequence
= hardware thread initiates request; OS interface raises interrupt
= delegate is synchronized to interrupts through blocking filesystem accesses
= delegate thread is woken up and retrieves OS call and parameters

E.LUbbers & M.Platzner, University of Paderborn

.C

software
threads

E.LUbbers & M.Platzner, University of Paderborn

Tool Flow

CPU buses.L Pel
pher

reference design

.vhd

hardware
threads

Tool Flow

CPU | buses Pel
pheral

reference design

platform
.C Vhd generation

software hardware
threads threads

synthesis /
place & route

E.LUbbers & M.Platzner, University of Paderborn

Tool Flow

delegig CPU W buses f Eeru
threads ReconOS/ pherals

eCos reference design
(static library)

compile & platform
.C link Vhd generation

software hardware
threads threads

synthesis /
place & route

E.LUbbers & M.Platzner, University of Paderborn

Tool Flow

delegate delegate Cpuj busej peri-J
heral
threacljs threads ReconOS/ pherals

eCos reference design
(static library)

libreconos
(static library)

compile & ! compile & platform
link .C link Vhd generation

software hardware
threads threads

synthesis /
place & route

OSIF
driver

linux.elf

E.LUbbers & M.Platzner, University of Paderborn

Overview

B motivation

m ReconOS abstraction layer
= programming model
= hardware architecture
= hardware threads
= OS interface & delegate threads

m host OS implementations
m ReconOS/eCos
a ReconOS/Linux

® experimental results

® conclusion

E.LUbbers & M.Platzner, University of Paderborn

OS Call Overheads

= synthetic hardware and software

threads

= semaphore and mutex processing time

(post — wait / unlock — lock)

= executed on three prototypes

= eCos/PPC
e XC2VP30
® PowerPC405 @300MHz
® HW threads & bus @100MHz

= Linux/PPC
® XC2VP30
® PowerPC405 @300MHz
® HW threads & bus @100MHz

= Linux/MicroBlaze
® XC4VSX35
® MicroBlaze 4.0 @100Mhz
® HW threads & bus @100MHz

E.LUbbers & M.Platzner, University of Paderborn

SW thread SW thread

4 ﬁ\

HW thread HW thread

S ——
Semaphore Operations
10000

1000

100
E II_I| I| II I| ||

B eCos/PPC B Linux/PPC Linux/MicroBlaze

FPL ‘08 15

Application Case Study

100000

unsorted data - -- >M%ﬂ%ﬂm B eCos/PPC
Linux/MicroBlaze

sort thread _
(SW or HW)

89871 + 1260

sort time + merge time

|
merge thread

11310 + 1264
10493 + 1261

lp)
(o0}
—

+
N~
&
©

. 10659 + 185

o
i 12001 + 185

sorted data ---»

%
=

HW
sort thread

= sort application

= sorts an array of integers (1MB) using a combination of bubble sort and
merge sort

= sort thread can be executed either in hardware or software

=) OS call overhead not a major factor in overall performance

E.LUbbers & M.Platzner, University of Paderborn

Conclusion & Outlook

= we extended the established multithreaded programming model
to reconfigurable hardware

® unified set of abstractions for hard- and software threads

provides portability across different host OS’s and CPU/FPGA
architectures

= the additional abstraction layer shows acceptable performance
iIn benchmarks and larger case studies

m future work

= implementation on FPGA accelerators for high-performance computing

= extension of OS scheduler to allow hardware thread scheduling using partial
reconfiguration

E.LUbbers & M.Platzner, University of Paderborn

Overview

B motivation

m ReconOS abstraction layer
= programming model

s hardware architecture Tha n k yO U
s hardware threads
= OS interface & delegate threads

m host OS implementations
= ReconOS/eCos
s ReconOS/Linux www.reconos.de

m experimental results

B conclusion

E.LUbbers & M.Platzner, University of Paderborn

http://www.reconos.de
http://www.reconos.de

Thank you

www.reconos.de

E.LUbbers & M.Platzner, University of Paderborn FPL ‘08

OS Overheads (Area)

command dec
23%

= total OSIF slice count: 1213 slices
= most of this taken up by PLB IPIF logic

PLB IPIF

fifo manager

bus slave registers
command decoder
bus master control

E.LUbbers & M.Platzner, University of Paderborn

Supported OS Calls

Semaphores (counting and binary) | o A
« reconos_semaphore_post() basic synchronization

= reconos_semaphore_wait() primitives

Mutexes

= reconos_mutex_lock() synchronize access to

= reconos_mutex_trylock() mutual exclusive operations

= reconos_mutex_unlock() (critical sections)

= reconos_mutex_release() handled In
&

Condition Variables software

= reconos_cond_wait() allow waiting until arbitrary via delegate

= reconos_cond_signal() conditions are satisfied thread)

= reconos_cond_broadcast()

Mailboxes

reconos_mbox_get()
reconos_mbox_tryget() message passing primitives
reconos_mbox_put() (blocking and not blocking)
reconos_mbox_tryput()

Memory access
= reconos_read()
= reconos_write()
= reconos_read_burst()
= reconos_write burst()

) handled in
> hardware
(via system

CPU-independent access bus / pgint-
to the entire system address to-point
space (memory and peripherals) links)

E.LUbbers & M.Platzner, University of Paderborn

ReconOS Software API (POSIX)

®m standard POSIX thread creation = ReconOS hardware thread creation

mqd_t my_mbox; mqd_t my_mbox;
sem_t my_sem; sem_t my_sem;
reconos_res_t thread_resources[2] = {
{ &my_mbox, POSIX_MQD_T },
{ &my_sem, POSIX_SEM_T }
s

pthread_t thread; rthread thread;
pthread_attr_t thread_attr; pthread_attr_t thread_swattr;

rthread_attr_t thread_hwattr;

pthread_attr_init(&thread_attr); pthread_attr_init(&thread_swattr);

rthread_attr_init(&thread_hwattr);
rthread_attr_setslotnum(&thread_hwattr, 0);

rthread_attr_setresources(&thread_hwattr,
thread_resources, 2);

pthread_create(rthread_create(

&thread, // thread object &thread, // thread object
&thread_attr, // attributes &thread_swattr, // software attributes

thread_entry, // entry point &thread_hwattr, // hardware attributes
(void *) data // entry data (void *) data // entry data

D D

E.LUbbers & M.Platzner, University of Paderborn FPL ‘08

Multi-Cycle Commands

® transfer of multiple state = A (HW thread) (OSIF) C CPU)
parameters and

return values with a
single VHDL call

= distributes execution
of an FSM state
across multiple clock
cycles

command

data

thread (busy/block

step

data

E.LUbbers & M.Platzner, University of Paderborn

Multi-Cycle Commands

= transfer of multiple
parameters and
return values with a
single VHDL call

= distributes execution
of an FSM state
across multiple clock
cycles

state =B

command

data

thread | busy/block

step

data

E.LUbbers & M.Platzner, University of Paderborn

Multi-Cycle Commands

= transfer of multiple state = A CHW thread) (OSIF) C CPU)
parameters and
return values with a
single VHDL call o

® distributes execution omd + data(1)
of an FSM state
across multiple clock "~ busy/block "
cycles

command

data

thread (busy/block

step

data

E.LUbbers & M.Platzner, University of Paderborn

= transfer of multiple
parameters and

Multi-Cycle Commands

return values with a

single VHDL call

state =B

m distributes execution

of an FSM state

across multiple clock

cycles

thread

command

data

busy/block
(

step

data

E.LUbbers & M.Platzner, University of Paderborn

state = A CHWthread) [OSIF)[CPU)

reconos call

cmd + data(0)

cmd + data(1)

busy/block

function
call

= transfer of multiple
parameters and

Multi-Cycle Commands

return values with a

single VHDL call

state =B

m distributes execution

of an FSM state

across multiple clock
cycles

thread

command

data

| busy/block

step

data

E.LUbbers & M.Platzner, University of Paderborn

state = A [HWthread) [OSIF)[CPU)

reconos call

cmd + data(0)

cmd + data(1)

busy/block

function
call

unblock + _
return value

call finished

= transfer of multiple
parameters and

Multi-Cycle Commands

return values with a

single VHDL call

state =B

m distributes execution

of an FSM state

across multiple clock
cycles

thread

command

<

data

busy/block

step

data

E.LUbbers & M.Platzner, University of Paderborn

state = A CHWthread) [OSIF)[CPU)

reconos call

cmd + data(0)

cmd + data(1)

busy/block

function
call

unblock + _
return value

call finished

Toolchain

-

/-\

thread thread
shared .

>
memory

E.LUbbers & M.Platzner, University of Paderborn

Toolchain

ReconOS

g hardware
repository

thread (VHDL)

software
thread (C)

\-——/

E.LUbbers & M.Platzner, University of Paderborn FPL ‘08

Toolchain

m software threads are written in C

u using the eCos software API software rzegzagf hardware
thread (C) e thread (VHDL)

® hardware threads are written In — T 4: N—
VHDL

u using the ReconOS VHDL API eCos library architecture
template

//

® architecture generation

u automatically inserts OS interfaces
and hardware threads into Xilinx
EDK platform templates

uconfigures and builds static eCos
library

E.LUbbers & M.Platzner, University of Paderborn

Toolchain

m software threads are written in C

u using the eCos software API

® hardware threads are written in
VHDL

u using the ReconOS VHDL API

® architecture generation

u automatically inserts OS interfaces
and hardware threads into Xilinx
EDK platform templates

uconfigures and builds static eCos
library

E.LUbbers & M.Platzner, University of Paderborn

software r':eg‘:i‘tgrs
thread (C) B

S——

hardware
thread (VHDL)

architecture
template

V7 TN

FPGA
toolflow

e

eCos library

compile & link

Sy

executable ™
J

| 4— bitstream

Toolchain

m software threads are written in C

u using the eCos software API software ReconOS hardware

thread (C) epository thread (VHDL)

® hardware threads are written in “— T T —

VHDL

u using the ReconOS VHDL API eCos library architecture
template

® architecture generation \ 7/ \/: v

u automatically inserts OS interfaces
and hardware threads into Xilinx compile & link

FPGA
toolflow

EDK platform templates

uconfigures and builds static eCos \ +

library executable =~ ¥ 4— Ditstream

R : \‘_\‘l ——
= eCos extensions |
u hardware thread object encapsulating delegate thread and OS interface “driver”

u profiling support to track the state of the hardware threads' OS synchronization state
machines

E.LUbbers & M.Platzner, University of Paderborn

Case Study - Image Processing Filter

® three threads
= capture image from Ethernet
= apply LaPlacian filter
= display image on VGA monitor

® threads communicate through
shared memory

= image resolution: 320x240 pixels, 8
bit greyscale

= Image data organized into blocks
(e.g. 40 lines = 1 block)

= a block is protected by two
semaphores

® “ready” semaphore: data can be safely
written into this block

® “new” semaphore: new data is available
in this block

E.LUbbers & M.Platzner, University of Paderborn

frames/s

capture thread
(software)

filter thread
(hard- or
software)

source
image

i
write

read

display thread

(hard- or
software)

flltered

8,5

[| SW-SW-SW
[| SW-HW-HW

[| SW-HW-sw

[] SW-HW-HW double buffered

A

3

window size

5

Case Study - Image Processing Filter

® three threads
= capture image from Ethernet
= apply LaPlacian filter
= display image on VGA monitor

® threads communicate through
shared memory

= image resolution: 320x240 pixels, 8
bit greyscale

= Image data organized into blocks
(e.g. 40 lines = 1 block)

= a block is protected by two
semaphores

® “ready” semaphore: data can be safely
written into this block

® “new” semaphore: new data is available
in this block

E.LUbbers & M.Platzner, University of Paderborn

capture thread
(software)

filter thread
(hard- or
software)

source
image

i
write

read

display thread
(hard- or
software)

flltered

[| SW-SW-SW
[| SW-HW-HW

[| SW-HW-sw

[] SW-HW-HW double buffered

Case Study - Results

7))
~
(7))
()
&
©
(.
Y

SW-SW-SW
SW-HW-SW
SW-HW-HW
SW-HW-HW double

>

3

window size

E.LUbbers & M.Platzner, University of Paderborn

Case Study - Results

SW-SW-SW
SW-HW-SW
SW-HW-HW
SW-HW-HW double

E.LUbbers & M.Platzner, University of Paderborn

OS Interface

E.LUbbers & M.Platzner, University of Paderborn

64 bit PLB (memory bus)

32 Bit DCR (control bus)

T

PLB slave bus
master

attachment
controller

Vo

to interrupt

command decoder
controller

“ e

hardware thread

FPL ‘08

:

aoevlul SO

~——

DCR slave
attachment

FIFO
manager

to/from other threads

OS Interface

B processes requests from
hardware thread 64 bit PLB (memory bus) 32 Bit DCR (control bus)

= handles blocking and resuming of % E)
hardware thread

:

aoevlul SO

~—— ~——

PLB slave bus DCR slave

master
attachment controller attachment

; /{

to interrupt

command decoder manager
controller

“ e

hardware thread

to/from other threads

E.LUbbers & M.Platzner, University of Paderborn

OS Interface

B processes requests from
hardware thread

= handles blocking and resuming of
hardware thread

® relays OS object interactions to
CPU

= DCR interface with bus-addressable
registers

= dedicated interrupt

E.LUbbers & M.Platzner, University of Paderborn

64 bit PLB (memory bus)

32 Bit DCR (control bus)

T

PLB slave
attachment

master
attachment
controller

il

bus DCR slave }

;

aoevlul SO

to interrupt
controller

command decoder

manager

: /{

| T
hardware thread

to/from other threads

OS Interface

B processes requests from
hardware thread 64 bit PLB (memory bus) 32 Bit DCR (control bus)

= handles blocking and resuming of % E)
hardware thread > —
{ PLB slave mt;l;fer DCR slave}

attachment attachment

il

aoevlul SO

® relays OS object interactions to controller
CPU ¢ ¢

= DCR interface with bus-addressable to interrupt
registers controller

= dedicated interrupt

command decoder manager

{ FIFO

B executes memory accesses

= PLB master interface

= direct access to entire system’s
address space (memory and
peripherals)

| T
hardware thread

to/from other threads

E.LUbbers & M.Platzner, University of Paderborn

OS Interface

B processes requests from
hardware thread 64 bit PLB (memory bus) 32 Bit DCR (control bus)

= handles blocking and resuming of y = B) = B "
hardware thread { = _= = _=

PLB slave mt;l;fer DCR slave
attachment attachment

® relays OS object interactions to controller
CPU ¢ ¢

= DCR interface with bus-addressable to interrupt
registers controller

= dedicated interrupt

aoeLIdulI SO

{ FIFO

command decoder manager

B executes memory aCCesses
= PLB master interface

= direct access to entire system’s
address space (memory and
peripherals)

® dedicated FIFO channels “ E ﬁ

= provide high-throughput hardware hardware thread
support for message passing to/from other threads

E.LUbbers & M.Platzner, University of Paderborn

Delegate Threads

(

V

RTOS kernel

delegate
thread

software
. thread

hw thread

E.LUbbers & M.Platzner, University of Paderborn

Delegate Threads

® basic mechanism

= a delegate thread in software is associated with every hardware thread
= the delegate thread calls the OS kernel on behalf of the hardware thread
= all kernel responses are relayed back to the hardware thread

(

V

delegate
thread y

software
. thread

RTOS kernel

th thread

E.LUbbers & M.Platzner, University of Paderborn

Delegate Threads

® basic mechanism

= a delegate thread in software is associated with every hardware thread
= the delegate thread calls the OS kernel on behalf of the hardware thread
= all kernel responses are relayed back to the hardware thread

® advantages
= no modification of the kernel required
= extremely flexible

= transparent to kernel and

other threads

(

V

delegate
thread

software
. thread

RTOS kernel

th thread

E.LUbbers & M.Platzner, University of Paderborn

Delegate Threads

® pbasic mechanism
= a delegate thread in software is associated with every hardware thread
= the delegate thread calls the OS kernel on behalf of the hardware thread
= all kernel responses are relayed back to the hardware thread

® advantages
= no modification of the kernel required
= extremely flexible

= transparent to kernel and
other threads

o delegate
= portability thread

= delegate acts as protocol y
gﬂgvggeliebrﬁ’g:/een HW thread 4 hw thread

= only the delegate thread code vg

needs to be changed to
support a new OS API

E.LUbbers & M.Platzner, University of Paderborn

