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Design of CPU/FPGA Systems

= hardware modules typically integrated as slave coprocessors
= hardware/software boundary explicit

= tedious and error-prone to program

= portability issues
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Multithreaded Programming
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Multithreaded Programming

= multithreaded programming model
= extended to reconfigurable hardware (ReconOS)
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Multithreaded Programming

= multithreaded programming model
= extended to reconfigurable hardware (ReconOS)
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Multithreaded Programming

® multithreaded programming model
= extended to reconfigurable hardware (ReconOS)
= provides transparent synchronization and communication b/w threads
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Multithreaded Programming

® multithreaded programming model
= extended to reconfigurable hardware (ReconOS)
= provides transparent synchronization and communication b/w threads

= operating system provides low-level synchronization and
communication
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® multithreaded programming model applicable to several
application domains, e.g.
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= reconfigurable embedded computing

= efficient exploitation of fine-grained parallelism with tight constraints
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= short reaction times, possibly real-time requirements
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Application Domains

= multithreaded programming model applicable to several
application domains, e.g.

= reconfigurable embedded computing

= efficient exploitation of fine-grained parallelism with tight constraints
(memory, area, power, processor performance)

= demand for easy design space exploration regarding HW/SW partitioning
= short reaction times, possibly real-time requirements

= reconfigurable high-performance computing

= transparent communication and synchronization in heterogeneous execution
environments (e.g. CPU nodes + FPGA accelerators)

= exploitation of both fine-grained and thread-level parallelism, possibly across
multiple machines

=) show applicability of ReconOS approach across different host
operating systems and CPU/FPGA architectures
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Overview

B motivation

= ReconOS abstraction layer
= programming model
= hardware architecture
= hardware threads
= OS interface & delegate threads

= host OS implementations
= ReconOS/eCos
= ReconOS/Linux

® experimental results

® conclusion
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Programming Model

THREAD_A

= applications are
. . . hared 4
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Programming Model

THREAD_A

= applications are
. . . ‘ hared
divided into threads — | g TN

. MBOX_IN1 |
® threads communicate - \-«‘//

via operating system SEM_NEW
objects

= semaphores

= mailboxes

= shared memory

SEM_READY

MBOX_IN2 MBOX_DATA MBOX_OUT
" .. THREAD_B THREAD_C

examples for API functions used by threads

software (POSIX, C) hardware (ReconOS, VHDL)

sem post () reconos sem post ()

pthread mutex lock() reconos mutex lock ()
mg send () reconos mbox put ()

value = *ptr reconos read()

pthread exit () reconos thread exit ()
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Hardware Architecture

= based on CoreConnect bus topology
= system CPU runs OS kernel and software threads

= hardware threads are synthesized to FPGA fabric
= connected to OS kernel via OS interface modules and buses

- - /0 controller Crgﬁ?;gr <|‘:|,> renxet(rer:gal
CPU ry
OS
kernel
system buses (PLB, DCR)

T

interrupt
controller

E.LUbbers & M.Platzner, University of Paderborn



Hardware Architecture

= based on CoreConnect bus topology
= system CPU runs OS kernel and software threads

= hardware threads are synthesized to FPGA fabric
= connected to OS kernel via OS interface modules and buses

; | voconmie | | T (0 s
CPU

+ kernel
@ @ system buses (PLB, DCR)

software
thread
T /
interrupt
controller

E.LUbbers & M.Platzner, University of Paderborn



Hardware Architecture

= based on CoreConnect bus topology
= system CPU runs OS kernel and software threads

= hardware threads are synthesized to FPGA fabric
= connected to OS kernel via OS interface modules and buses

P a [I/O controller} L Crgﬁ?;gr }< > %X;renrggl
CPU
~ kernel
ssr:‘:\év @ @ system buses (PLB, DCR)

ar
ad
software
thread
T 4
interrupt
controller

hardware hardware hardware
thread thread thread

E.LUbbers & M.Platzner, University of Paderborn



Hardware Architecture

= based on CoreConnect bus topology
= system CPU runs OS kernel and software threads

= hardware threads are synthesized to FPGA fabric
= connected to OS kernel via OS interface modules and buses

- - [I/O controller} L Crgﬁ?;gr }< > %X;(zggl
CPU
~ kernel
Sfr::\év @ @ system buses (PLB, DCR)

OS interface OS interface OS interface

ar
ad
U I
thread
T 4

mtetrrulf)t
controller «—

hardware hardware hardware
thread thread thread

E.LUbbers & M.Platzner, University of Paderborn



ReconOS API for Hardware Threads

R O S

osif_fsm: process(clk, reset)
begin
if (reset = '1’) then
state <= IDLE;
run <= '0°;
|reconos reset|(o_osif, i_osif);
elsif rising_edge(clk) then
|reconos_begin(o_osif, i_osif);
if| reconos_ready|(i_osif) then
case stafe Is
when IDLE =>
| reconos_sem_wait/(o_osif , i_osif , CSEMA);
state <= READ;

when READ =>

l[reconos_shm_read_burst| o_osif, i_osif,
local_ address
global_ address);

state <= RUN;

when RUN =>
run <= '17;
if done = 1’ then
run <= '07;
state <= WRITE;
end if;

when WRITE =>

Ireconos shm_write._ burstl(o osif, i_osif,
local_ address
global_address);

state <= POST;
when POST =>

| reconos_sem. gos {o osif, i_osif, C.SEMB);
state <= ’

when others => null;
end case;
end if;
end if;
end process;
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OS Interface

= VVHDL function library
= used similar to software API

= may only be used inside OS
synchronization state machine

~- hardware thread

OS synchronization state machine

/ sem_wait
(C_SEM_A)

done ="'0"
run <=1
-\
N

|
,‘i

done=""/

run <= '0' -7

|
I / shm_read()

/ shm_write()

transitions occur only when
OS interface is ready

user logic
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OS Interface and Delegate Threads

64 bit PLB (memory bus) 32 Bit DCR (control bus)

~_ ~_

OS interface

to interrupt
controller

user logic

hardware thread to/from other threads

m OS interface

processes requests from HW thread
relays OS object interactions to CPU
executes memory accesses
provides dedicated FIFO channels
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OS Interface and Delegate Threads

64 bit PLB (memory bus) 32 Bit DCR (control bus)

~_ ~_

OS interface
delegate

to interrupt

controller thread

{ th thread

\/
RTOS kernel

E==Si RO

hardware thread to/from other threads

= OS interface ® delegate thread

= processes requests from HW thread = associated with every hardware

= relays OS object interactions to CPU thread |
= executes memory accesses = calls kernel functions on behalf

_ _ of hardware thread
= provides dedicated FIFO channels

= provide stable API on different OS's and platforms
= OS interface manages low-level communication to CPU and memory
= delegate translates HW thread requests to OS kernel API
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Overview

B motivation

m ReconOS abstraction layer
= programming model
= hardware architecture
= hardware threads
= OS interface & delegate threads

®= host OS implementations
= ReconOS/eCos
= ReconOS/Linux

® experimental results

® conclusion
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OS Call Sequence (eCos)
@

--p-

Hardware
Thread

OS Interrupt
Interface Controller

DCR bus

eCos Kernel

AN
. L}
F@
) 4 -
Deferred Interrupt

Service Service
Routine Routine

Delegate
Thread

= configurable, small-footprint operating system for embedded domain
= all code executes in kernel mode; simple hardware access possible

= OS call sequence
= hardware thread initiates request; OS interface raises interrupt
= delegate is synchronized to interrupts through semaphores
= delegate thread is woken up and retrieves OS call and parameters
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OS Call Sequence (Linux)

Hardware _9 OS Interrupt
Thread Interface Controller

4’x

DCR bus

Handler

@ [ Interrupt

‘| OSIF driver
| Linux Kernel

Delegate

® Linux
= flexible and widely used OS for embedded and HPC domain
= no direct hardware access possible from Linux user space; needs driver

= OS call sequence
= hardware thread initiates request; OS interface raises interrupt
= delegate is synchronized to interrupts through blocking filesystem accesses
= delegate thread is woken up and retrieves OS call and parameters
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Tool Flow
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Tool Flow
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Tool Flow
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Overview

B motivation

m ReconOS abstraction layer
= programming model
= hardware architecture
= hardware threads
= OS interface & delegate threads

m host OS implementations
m ReconOS/eCos
a ReconOS/Linux

® experimental results

® conclusion
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OS Call Overheads

= synthetic hardware and software

threads

= semaphore and mutex processing time

(post — wait / unlock — lock)

= executed on three prototypes

= eCos/PPC
e XC2VP30
® PowerPC405 @300MHz
® HW threads & bus @100MHz

= Linux/PPC
® XC2VP30
® PowerPC405 @300MHz
® HW threads & bus @100MHz

= Linux/MicroBlaze
® XC4VSX35
® MicroBlaze 4.0 @100Mhz
® HW threads & bus @100MHz
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Application Case Study

100000

unsorted data - -- >M%ﬂ%ﬂm B eCos/PPC
Linux/MicroBlaze

sort thread _
(SW or HW)

89871 + 1260

sort time + merge time

|
merge thread

11310 + 1264
10493 + 1261

lp)
(o0}
—

+
N~
&
©

. 10659 + 185

o
i 12001 + 185

sorted data ---»

%
=

HW
sort thread

= sort application

= sorts an array of integers (1MB) using a combination of bubble sort and
merge sort

= sort thread can be executed either in hardware or software

=) OS call overhead not a major factor in overall performance
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Conclusion & Outlook

= we extended the established multithreaded programming model
to reconfigurable hardware

® unified set of abstractions for hard- and software threads

provides portability across different host OS’s and CPU/FPGA
architectures

= the additional abstraction layer shows acceptable performance
iIn benchmarks and larger case studies

m future work

= implementation on FPGA accelerators for high-performance computing

= extension of OS scheduler to allow hardware thread scheduling using partial
reconfiguration
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Overview

B motivation

m ReconOS abstraction layer
= programming model

s hardware architecture Tha n k yO U
s hardware threads
= OS interface & delegate threads

m host OS implementations
= ReconOS/eCos
s ReconOS/Linux www.reconos.de

m experimental results

B conclusion
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http://www.reconos.de
http://www.reconos.de

Thank you

www.reconos.de
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OS Overheads (Area)

command dec
23%

= total OSIF slice count: 1213 slices
= most of this taken up by PLB IPIF logic

PLB IPIF

fifo manager

bus slave registers
command decoder
bus master control
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Supported OS Calls

Semaphores (counting and binary) | o A
« reconos_semaphore_post() basic synchronization

= reconos_semaphore_wait() primitives

Mutexes

= reconos_mutex_lock() synchronize access to

= reconos_mutex_trylock() mutual exclusive operations

= reconos_mutex_unlock() (critical sections)

= reconos_mutex_release() handled In
&

Condition Variables software

= reconos_cond_wait() allow waiting until arbitrary via delegate

= reconos_cond_signal() conditions are satisfied thread)

= reconos_cond_broadcast()

Mailboxes

reconos_mbox_get()
reconos_mbox_tryget() message passing primitives
reconos_mbox_put() (blocking and not blocking)
reconos_mbox_tryput()

Memory access
= reconos_read()
= reconos_write()
= reconos_read_burst()
= reconos_write burst()

) handled in
> hardware
(via system

CPU-independent access bus / pgint-
to the entire system address to-point
space (memory and peripherals) links)
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ReconOS Software API (POSIX)

®m standard POSIX thread creation = ReconOS hardware thread creation

mqd_t my_mbox; mqd_t my_mbox;
sem_t my_sem; sem_t my_sem;
reconos_res_t thread_resources[2] = {
{ &my_mbox, POSIX_MQD_T },
{ &my_sem, POSIX_SEM_T }
s

pthread_t thread; rthread thread;
pthread_attr_t thread_attr; pthread_attr_t thread_swattr;

rthread_attr_t thread_hwattr;

pthread_attr_init(&thread_attr); pthread_attr_init(&thread_swattr);

rthread_attr_init(&thread_hwattr);
rthread_attr_setslotnum(&thread_hwattr, 0);

rthread_attr_setresources(&thread_hwattr,
thread_resources, 2);

pthread_create( rthread_create(

&thread, // thread object &thread, // thread object
&thread_attr, // attributes &thread_swattr, // software attributes

thread_entry, // entry point &thread_hwattr, // hardware attributes
( void * ) data // entry data ( void * ) data // entry data

D D
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Multi-Cycle Commands

® transfer of multiple state = A (HW thread) ( OSIF ) C CPU )
parameters and

return values with a
single VHDL call

= distributes execution
of an FSM state
across multiple clock
cycles

command

data

thread (busy/block

step

data
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Multi-Cycle Commands

= transfer of multiple
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single VHDL call
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of an FSM state
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state =B

command
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data
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Multi-Cycle Commands

= transfer of multiple state = A CHW thread) ( OSIF ) C CPU )
parameters and
return values with a
single VHDL call o

® distributes execution omd + data(1)
of an FSM state
across multiple clock "~ busy/block "
cycles

command

data

thread (busy/block
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data
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= transfer of multiple
parameters and

Multi-Cycle Commands

return values with a

single VHDL call

state =B

m distributes execution

of an FSM state

across multiple clock

cycles

thread

command

data

busy/block
(

step

data
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state = A CHWthread) [ OSIF )[ CPU )

reconos call

cmd + data(0)

cmd + data(1)

busy/block

function
call




= transfer of multiple
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Multi-Cycle Commands
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cycles

thread

command
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state = A [HWthread) [ OSIF )[ CPU )

reconos call

cmd + data(0)

cmd + data(1)

busy/block

function
call

unblock + _
return value

call finished



= transfer of multiple
parameters and

Multi-Cycle Commands

return values with a

single VHDL call
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Toolchain
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Toolchain

ReconOS

g hardware
repository

thread (VHDL)

software
thread (C)

\-——/
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Toolchain

m software threads are written in C

u using the eCos software API software rzegzagf hardware
thread (C) e thread (VHDL)

® hardware threads are written In — T 4: N—
VHDL

u using the ReconOS VHDL API eCos library architecture
template

//

® architecture generation

u automatically inserts OS interfaces
and hardware threads into Xilinx
EDK platform templates

uconfigures and builds static eCos
library
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Toolchain

m software threads are written in C

u using the eCos software API

® hardware threads are written in
VHDL

u using the ReconOS VHDL API

® architecture generation

u automatically inserts OS interfaces
and hardware threads into Xilinx
EDK platform templates

uconfigures and builds static eCos
library
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Toolchain

m software threads are written in C

u using the eCos software API software ReconOS hardware

thread (C) epository thread (VHDL)

® hardware threads are written in “— T T —

VHDL

u using the ReconOS VHDL API eCos library architecture
template

® architecture generation \ 7/ \/: v

u automatically inserts OS interfaces
and hardware threads into Xilinx compile & link

FPGA
toolflow

EDK platform templates

uconfigures and builds static eCos \ +

library executable =~ ¥ 4— Ditstream

R : \‘_\‘l ——
= eCos extensions |
u hardware thread object encapsulating delegate thread and OS interface “driver”

u profiling support to track the state of the hardware threads' OS synchronization state
machines
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Case Study - Image Processing Filter

® three threads
= capture image from Ethernet
= apply LaPlacian filter
= display image on VGA monitor

® threads communicate through
shared memory

= image resolution: 320x240 pixels, 8
bit greyscale

= Image data organized into blocks
(e.g. 40 lines = 1 block)

= a block is protected by two
semaphores

® “ready” semaphore: data can be safely
written into this block

® “new” semaphore: new data is available
in this block

E.LUbbers & M.Platzner, University of Paderborn
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Case Study - Results
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Case Study - Results
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OS Interface
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64 bit PLB (memory bus)

32 Bit DCR (control bus)

T

PLB slave bus
master

attachment
controller

Vo

to interrupt

command decoder
controller

“ e

hardware thread
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OS Interface

B processes requests from
hardware thread 64 bit PLB (memory bus) 32 Bit DCR (control bus)

= handles blocking and resuming of % E )
hardware thread

:

aoevlul SO

~—— ~——

PLB slave bus DCR slave

master
attachment controller attachment

; /{

to interrupt

command decoder manager
controller

“ e

hardware thread

to/from other threads
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OS Interface

B processes requests from
hardware thread

= handles blocking and resuming of
hardware thread

® relays OS object interactions to
CPU

= DCR interface with bus-addressable
registers

= dedicated interrupt

E.LUbbers & M.Platzner, University of Paderborn
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Delegate Threads

® basic mechanism

= a delegate thread in software is associated with every hardware thread
= the delegate thread calls the OS kernel on behalf of the hardware thread
= all kernel responses are relayed back to the hardware thread
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Delegate Threads

® basic mechanism

= a delegate thread in software is associated with every hardware thread
= the delegate thread calls the OS kernel on behalf of the hardware thread
= all kernel responses are relayed back to the hardware thread

® advantages
= no modification of the kernel required
= extremely flexible

= transparent to kernel and

other threads
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Delegate Threads

® pbasic mechanism
= a delegate thread in software is associated with every hardware thread
= the delegate thread calls the OS kernel on behalf of the hardware thread
= all kernel responses are relayed back to the hardware thread

® advantages
= no modification of the kernel required
= extremely flexible

= transparent to kernel and
other threads

o delegate
= portability thread

= delegate acts as protocol y
gﬂgvggeliebrﬁ’g:/een HW thread 4 hw thread

= only the delegate thread code vg

needs to be changed to
support a new OS API
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