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ABSTRACT

The multithreaded programming model has been shown to
provide a suitable abstraction for reconfigurable computers.
Previous implementations of corresponding runtime systems
have been limited to a single host operating system, hard-
ware platform, or application domain.

This paper presents the implementation of ReconOS, our
hardware/software multithreaded programming model, on
both eCos and Linux-based host systems as well as on Pow-
erPC and MicroBlaze CPUs. This demonstrates that Re-
conOS provides a truly portable abstraction layer for pro-
gramming reconfigurable computers. Further, we quantify
the performance of operating system calls and measure the
resulting application level performance.

1. INTRODUCTION

Due to the lack of pervasive high-level programming ab-
stractions most reconfigurable hardware accelerators are im-
plemented as passive coprocessor-like extensions invoked
via procedure calls, which does not fit well with the increas-
ing densities and capabilities of reconfigurable fabrics. A
promising approach toward a higher-level programming ab-
straction is to express applications as a collection of threads
and to manage the reconfigurable resources from an operat-
ing system layer. While earlier work focused on concepts
and single runtime management functions such as place-
ment and scheduling, the focus now lies on a true embedding
of hardware circuits as independent execution units into the
programming abstraction offered by a host operating system
(OS). Lately, extensions of Linux-based OS have emerged
that promote integration of software threads and hardware
processes. Kosciuszkiewicz et al. [1] build on top of an ex-
isting Linux kernel and try to model hardware tasks as a
drop-in replacement for software tasks. Processes executing
in the FPGA’s fabric appear as regular threads to the oper-
ating system kernel. However, the existing implementation
is limited to thread interactions via FIFOs only, and does
not exploit the fine-grained parallelism of FPGAs, but maps
threads to be executed in hardware to synthesized proces-
sors. Xie et. al. [2] support a similar heterogeneous mul-
tiprocessor system consisting of soft processor cores, syn-

thesized to an FPGA, with Linux OS services. Bergmann
et al. [3] wrap arbitrary hardware circuits in software wrap-
pers, so called ghost processes, that provide a transparent in-
terface for interactions from the kernel and other processes.
Their approach considers sharing the same address space be-
tween hard- and software processes as unsuitable and hence
uses processes instead of threads to encapsulate hardware
modules. So et al. [4][5] modify and extend a standard
Linux kernel with a hardware interface, providing conven-
tional UNIX IPC mechanisms to the hardware using a mes-
sage passing network. On the operating system level, they
also map inter-thread communication to FIFOs.

These approaches try to connect processes implemented
in reconfigurable hardware to single existing operating sys-
tem objects to ease communication. While simplifying the
design, this also presents restrictions to the thread designer
and hinders portability. We believe that supporting a unified
programming model consisting of various objects for com-
munication, synchronization, and thread control is essential
for exploiting the full potential of reconfigurable systems
while maintaining portability across different software OS
bases and hardware platforms.

In our previous work, we have developed ReconOS [6],
which demonstrated hardware/software multithreading based
on eCos [7] as a host OS running on the PowerPC core
of modern platform FPGAs. With ReconOS, we have cre-
ated an abstraction layer common to both software and hard-
ware threads, allowing the latter to autonomously initiate
OS calls. A related project is hthreads [8], which imple-
ments the OS components managing synchronization and
scheduling as hardware IP cores, sacrificing the flexibility
of a software OS kernel for exceptionally low response time
and jitter [9].

A cardinal argument for using an operating system is
portability, a feature important for both classic and recon-
figurable computers. We are interested in investigating the
portability of our hardware/software multithreading abstrac-
tion layer across different processors, different host operat-
ing systems, different reconfigurable fabrics, and different
application domains. This paper proves the first two points
and lays the groundwork for expanding the applicability of
ReconOS from embedded systems to the domain of recon-



figurable high-performance computing.
In both domains, we observe an increased use of re-

configurable accelerators and the acceptance of multithread-
ing as a programming abstraction. However, while embed-
ded applications are typically dependent on deterministic
OS calls, small memory and area footprints, low interrupt la-
tencies, and minimal power consumption, high-performance
systems, on the other hand, need complete multiuser OS
functionality including memory protection, as well as sci-
entific support libraries, network protocol stacks, and spe-
cialized communication abstractions. To be able to support
our programming model in both areas, we need to show that
ReconOS can be adapted to and run on existing operating
systems that already cater to the needs of their respective
application domains.

The novel contributions of this paper are to present the
implementation of the ReconOS hardware/software multi-
threaded programming abstraction on Linux, to contrast it
with the existing eCos-based version, and to quantify and
compare the performance of both systems.

The remainder of this paper is organized as follows: A
short overview of the ReconOS multithreaded programming
model is given in Section 2, with the role of delegate threads
explained in Section 3. Section 4 presents the implementa-
tions of the ReconOS software runtime system on eCos and
Linux using differing hardware platforms; their performance
is evaluated in Section 5. Section 6 summarizes the results
and discusses future work.

2. PROGRAMMING MODEL

The ReconOS programming model builds on top of estab-
lished programming models for real-time operating systems,
and extends them to the hardware domain. The basic unit
of execution is a thread, which can be implemented as a
”regular” software thread of the respective operating system,
scheduled and executed on the system’s main CPU, or as a
hardware thread, implemented as a hardware circuit on an
FPGA. Essentially, hardware threads and software threads
can access the same operating system services, such as com-
munication and synchronization, using the same operating
system objects, such as semaphores, shared memory, or mu-
texes. In ReconOS, these objects are managed by the soft-
ware operating system kernel; software threads access them
using the existing and established software API provided by
the respective operating system.

To allow hardware threads to access these OS objects,
the corresponding software API calls are exposed to the hard-
ware through a VHDL library. The procedures provided by
this library, listed in Table 1, can be used in a state machine
description to synchronize the hardware thread’s operation
with the operating system and other threads. Since VHDL
does not provide as transparent a memory access model as
C, reads and writes to system memory also require their own
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Fig. 1. Communication between HW thread and OSIF

ReconOS API calls. By applying this ”hardware API”, the
hardware thread manipulates defined OS interface signals,
which in turn evoke the appropriate control functions in a
separate operating system interface module (OSIF), which
is shown in Figure 1. The OSIF then either executes the re-
quested function, if it can be handled in hardware, or relays
the OS call to the CPU by means of an interrupt line and
software-accessible registers. To ensure low and determin-
istic latencies for operating system calls, the communication
between the OSIF and the CPU is routed through a device
control register (DCR) bus that is separate from the memory
bus (PLB).

Apart from the mentioned OS synchronization state ma-
chine, a hardware thread can contain an arbitrary number
of concurrent ”user logic” VHDL processes which carry out
the thread’s intended functionality. Usually, these processes
are synchronized with the state machine through handshake
signals; for simple tasks, it is also possible to integrate the
processing directly into the state machine. More detail and
an example for hardware thread programming can be found
in [6].

3. DELEGATE THREADS

A fundamental assumption of the ReconOS programming
model concerns the transparency of thread-to-thread com-
munication and synchronization, regardless of the execution
context (hardware or software) of the respective communi-
cation partners. This enables the designer to easily replace,
for example, a software thread with a functionally equivalent
hardware thread, allowing for rapid design space exploration
with respect to the hardware/software partitioning.

In ReconOS, every hardware thread is associated with
exactly one software thread, its delegate, to achieve this trans-



Table 1. ReconOS hardware API
Class VHDL procedure
Initialization reconos get init data()
Thread termination reconos thread exit()
Memory access reconos write()

reconos read()
reconos write burst()
reconos read burst()

Semaphores reconos sem post()
reconos sem wait()

Mutexes reconos mutex lock()
reconos mutex trylock()
reconos mutex unlock()
reconos mutex release()

Condition variables reconos cond wait()
reconos cond signal()
reconos cond broadcast()

Message boxes reconos mbox get()
reconos mbox tryget()
reconos mbox put()
reconos mbox tryput()

parency. The delegate is responsible for executing operating
system calls on behalf of the corresponding hardware thread,
making it appear as a software thread to the operating sys-
tem kernel. Delegate threads are created as standard OS
threads and passed additional parameters necessary to ac-
cess the OSIF hardware. After creation, the delegate resets,
initializes and starts (i.e. unblocks) the hardware thread. It
then waits for an incoming OS request from the hardware to
execute.

To be able to map the OS objects referenced by the hard-
ware thread to actual instances in the operating system ker-
nel, the delegate thread maintains a table of object instances
that are used by the hardware thread. Individual resources
are represented towards the hardware thread as an index into
this table. Hence, a single hardware thread description (i.e.
VHDL source code, netlist or possibly a relocatable bit-
stream) can be used for multiple instances in the system; giv-
ing different instances access to different resources is sim-
ply a matter of changing the delegate’s OS object table. This
mechanism is also a prerequisite for partial reconfiguration
of hardware threads, which is planned as a future extension.

4. IMPLEMENTATIONS

The programming model described in Section 2 has been
implemented on top of two wide-spread operating system
kernels: eCos and Linux. While eCos is designed primarily
for embedded systems with limited resources, Linux is tar-
geted at a wide range of application areas and corresponding
target platforms. As a consequence, both systems provide
a somewhat disparate feature set. Many differences, how-
ever, can be hidden from the application programmer behind
the POSIX API, which is supported by both systems. Since
hardware threads are written with a seperate API that is sim-
ilar to POSIX and supported by the ReconOS abstraction
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layer, both systems are capable of running the same soft-
ware and hardware threads with little to no changes to the
source code.

4.1. eCos

The eCos [7] real-time operating system provides a mod-
ular and configurable framework of operating system ser-
vices. Application designers can select the necessary pack-
ages from the eCos repository and compile them into a li-
brary, which the final application is linked against. eCos is
also configurable on a source code level; using preprocessor
macros, unneeded code is removed at compile time, result-
ing in small code sizes, which suits the targeted embedded
segment. eCos is written in C/C++ and supports a range of
target processor architectures, including the PowerPC 405,
but not the MicroBlaze soft core, which limits applying eCos
to Xilinx FPGAs of the Virtex-II Pro and Virtex4FX fami-
lies, for now.

To transparently include ReconOS delegate threads in
the eCos programming model, we have extended the eCos
thread class to include additional information relevant to
hardware threads, such as OSIF addresses, interrupt num-
bers, and OS object tables. Together with C wrappers for
thread creation that are very similar to the eCos and POSIX
API, reusing the existing thread code allows ReconOS del-
egate threads (and, by extension, the associated hardware
threads) to take advantage of all OS services provided by
the eCos kernel.

Because eCos does not distinguish between user and ker-
nel space but runs entirely in the processor’s real mode,
hardware access from user threads is greatly simplified. Al-
though the delegate thread is logically part of the user ap-
plication rather than the kernel, it can directly access the
DCR bus to communicate with its corresponding OSIF. eCos
also lets hardware and software threads share the same ad-
dress space, since it disables the MMU, sacrificing memory
protection and privilege management for a greatly simpli-



fied memory access model and higher performance. While
unreasonable for larger-scale multiuser systems, this is en-
tirely appropriate for small-footprint self-contained embed-
ded systems, as targeted by eCos.

The sequence of events that is performed to relay an OS
call from hardware to the eCos kernel is shown in Figure 2.
When a hardware thread uses a VHDL API call to request
an operating system service, the respective VHDL proce-
dure asserts certain handshake lines between the thread and
its OSIF (1). Pending OS call requested by the OSIF are
signalled to the CPU’s interrupt controller via a dedicated
interrupt line (2). In eCos, interrupt processing is split in
two steps to ensure rapid response to incoming interrupt re-
quests. First, a very small interrupt service routine is in-
voked (3), which executes in its own context, performs the
necessary operations to enable reception of the next interrupt
as quickly as possible, and marks the deferred service rou-
tine (4) for execution. The latter is scheduled by the regular
eCos scheduler so as not to interfere with the low-level inter-
rupt processing, which keeps interrupt response times low.
As the last step before the actual delegate thread is invoked,
the DSR posts a semaphore (5) which the delegate is waiting
on, essentially signalling an incoming request. The delegate
thread then directly accesses the OSIF’s registers via dedi-
cated DCR access instructions to retrieve call parameters (6)
and executes the requested eCos kernel function.

4.2. Linux

The Linux operating system is employed on a wider range
of target architectures and therefore enjoys a wider adoption
than eCos. The list of architectures includes, as the most
interesting to us, the PowerPC 405 and the Xilinx MicroB-
laze soft core. The latter widens the range of target FPGAs,
including those without an embedded CPU core. The Mi-
croBlaze can be synthesized in variants with or without an
MMU. For our MicroBlaze prototype, we have opted for the
omission of an MMU, which simplifies memory transfers
between software and hardware threads.

While offering a wide set of configurable options, it is
not possible to reduce the memory footprint of a Linux ker-
nel as much as is possible with eCos. Absolute values on the
size of the respective kernel images are difficult to obtain, as
the code size greatly depends on the selected features, the
target architecture, and the employed compiler. Also, an
eCos kernel image already includes all necessary API im-
plementations, the libc, and possibly a network stack. It can
be expected, though, that a Linux kernel’s size will exceed
an equivalent eCos kernel by about an order of magnitude.

To communicate with its OSIF, a delegate thread needs
access to the DCR bus. On a PowerPC system, this is ac-
complished through the mtdcr and mfdcr instructions,
both of which are privileged. In Linux, user-space code,
such as a delegate thread, typically cannot execute privi-
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leged instructions. To make the OSIF registers accessible
to the delegate, we have implemented the low-level hard-
ware access to the OSIF registers in a kernel driver, which
publishes the registers through a device node, as depicted
in Figure 3. The hardware-independent code, such as the
API wrappers and the delegate thread code, is implemented
through a library that is linked with the user application.

Due to the separation of hardware-dependent and inde-
pendent code, the sequence of events to relay an OS call
from hardware to the Linux kernel differs from the one de-
scribed in Section 4.1. The signal assertions between hard-
ware thread and OSIF (1) and the interrupt request to the
system’s interrupt controller (2) are identical. When a del-
egate thread needs to access its OSIF, it does so through
filesystem accesses to the kernel driver’s device node. In
eCos, synchronization between the delegate thread and the
OSIF was achieved through a dedicated semaphore; in Linux,
this synchronization is implemented through read accesses
blocking until an interrupt from the OSIF is registered (3).
Only then is the blocking delegate thread resumed (4) and
the read access translated into DCR operations (5). Write
operations to an OSIF do not block.

Data transfers between software and hardware threads
are complicated by the fact that Linux usually employs vir-
tual memory. This means that memory buffers set aside by
an application as shared memory to transfer data to or from
hardware threads are not necessarily contiguous; further-
more, the hardware thread operates on physical addresses,
while software threads use virtual addresses which are trans-
lated by the MMU. Also, it is not possible for user applica-
tions to flush or invalidate the processor’s caches in order to
maintain cache coherency.

Therefore, shared memory for thread communications
across the HW/SW boundary has to be implemented in one



of three ways: a) by using a separate, uncached memory
buffer which is advertised to the kernel as a memory mapped
device, b) by allocating contiguous buffer of kernel memory
via kmalloc(), mapping it into user space, and providing
hardware threads with its physical address, or c) by provid-
ing every OSIF with a small-scale MMU which keeps a mir-
ror of the processors TLB and other virtual memory infor-
mation, similar to [10]. The first two ways, which involve a
separate device driver, are currently being investigated. The
third approach bears the biggest complexity, but also pro-
vides a transparent memory access model, and will be the
target of our future research.

5. EXPERIMENTAL MEASUREMENTS

The somewhat different nature of the two operating sys-
tems ReconOS has been ported to presents the interesting
question of how the complete HW/SW systems compare
perfomance-wise. To enable quantitative measurements on
the system performance, we have run a set of benchmarks on
three prototype implementations: ReconOS/eCos and Re-
conOS/Linux on a XC2VP30 FPGA, and ReconOS/Linux
on a XC4V35SX FPGA. The software parts of the first two
prototypes executes on the FPGA’s embedded PowerPC 405
running at 300 MHz, while the third prototype runs a noMMU
variant of Linux on a MicroBlaze v4.0 soft core processor
clocked at 100 MHz. All implementation feature a similar
hardware layout, each with PLB, OPB and DCR buses run-
ning at 100 MHz, as well as external DDR memory. The
Linux systems run a 2.6 kernel.

The first set of experiments employs a set of synthetic
threads analyzing the performance of timing critical OS calls.
The mutex and semaphore primitives from Table 1 serve as
representative examples, as most other supported API calls
are either based on them or are not of interest for timing. The
threads measure the raw execution time of single OS API
calls to lock/unlock a mutex or post/wait for a semaphore,
respectively, as well as a measure we call the turnaround
time. This is the time it takes for one thread to release a mu-
tex / post a semaphore, and the next thread waiting on that
mutex / semaphore to acquire a lock / receive the semaphore
and continue. The experiments have been run with different
combinations of software and hardware threads; results are
shown in Table 2 and Figures 4 (a) and (b).

Synchronization operations on the eCos kernel behave
as expected: calls from hardware are more expensive than
their software counterparts due to the additional interrupt
processing and hardware accesses. The Linux implemen-
tations show a similar behaviour but differ in certain details.
Overall, OS calls are significantly more expensive in a Linux
kernel than in eCos; a fact which can be attributed to context
switches to and from kernel mode when executing OS func-
tions. On a PowerPC CPU running at the same speed, the
Linux calls take about an order of magnitude longer than the

Table 2. Synchronization benchmark results
eCos/PPC Linux/PPC Linux/MicroBlaze

Mutex (raw OS calls)
SW lock 83 821 9178
SW unlock 171 551 9179
HW lock 959 7769 35855
HW unlock 679 2636 22360
Mutex (turnaround)
SW→ SW 453 8821 83657
SW→ HW 629 9824 90515
HW→ SW 1449 14371 121673
HW→ HW 1460 14102 126668
Semaphore (raw OS calls)
SW post 73 598 13180
HW post 695 1972 22116
Semaphore (turnaround)
SW→ SW 305 9094 203221
SW→ HW 528 9575 207824
HW→ SW 908 12291 145924
HW→ HW 1114 12196 154013

All values given in bus cycles (1 cycle = 10 ns)

corresponding eCos calls. Using a considerably less power-
ful MicroBlaze soft core processor clocked at a third of the
clock frequency, the execution times rise by another order
of magnitude, except for one anomaly: software-initiated
semaphore operations exhibit about twice the latencies that
we expected. This inconsistency will be further investigated.

The second set of experiments focuses on the real-world
implications of the OS call overheads by evaluating sys-
tem performance in a complete application. A list of 218

unsorted 32 bit integers is sorted, using a combination of
bubble-sort and merge sort. First, the list is divided into
128 chunks, which are sorted individually using bubble sort.
The resulting lists are then merged. To map this application
onto our system, we divided it into two threads, one for the
bubble sort routine, which has a software and a hardware
implementation, and one for the merge operation, which is
always performed in software. The threads communicate
using shared memory and use message boxes for synchro-
nization. The benchmark has been run on two of our three
prototype platforms, one running ReconOS/eCos on a Pow-
erPC, the other running ReconOS/Linux on a MicroBlaze.
Three tests were performed: the first running the sort thread
in software (SW); the second running the sort thread in hard-
ware (HW); and the third running two sort threads concur-
rently, one in software, the other in hardware (SW+HW).
The results of the measurements are shown in Figure 4 (c).
In the sum above each bar, the first (bold) value denotes the
time spent sorting, while the second is the merge time.

The first and last test, which perform (at least part of)
the sorting routine in software, reveal, unsurprisingly, that
the MicroBlaze processor performs the sort operation vastly
slower than the PowerPC. However, when executing the sort-
ing thread solely in hardware, both systems are almost on
par. In this situation, the hardware threads interact with
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Fig. 4. Experimental results

the OS synchronization primitives infrequently enough so
that the performance penalty due to additional software pro-
cessing remains within acceptable limits. This is a common
scenario: an application designer will be likely to use the
precious hardware resources for data-centric computations
with relatively enfrequent OS synchronization operations,
and perform most control-dominated tasks inside software
threads. Therefore, while the penalty incurred by the low-
level synchronization and communication between delegate
thread and OS interface is substantial for OS calls alone, the
effect on overall application performance is not.

6. CONCLUSION

In this paper, we have presented implementations of the Re-
conOS hardware/software programming model on both eCos
and Linux-based systems running on an embedded Pow-
erPC or the soft core MicroBlaze CPU. This work demon-
strates the portability of the ReconOS abstraction layer, sig-
nificantly extending the range of reconfigurable target plat-
forms and application domains that can take advantage of
the multithreaded programming model. We have also ana-
lyzed and quantified the performance of both single oper-
ating system calls and a complete application. The results
show that single OS services involving hardware threads are
executed about one order of magnitude slower than the same
services for software threads. On the application level, how-
ever, this performance difference is not observed since typ-
ical hardware threads make rather infrequent use of OS ser-
vices.

Future research will focus on several areas: First, we
will investigate the integration of virtual memory models as
used by MMU-based Linux implementations into ReconOS
(see Section 4.2). Second, we plan to integrate partial re-
configuration techniques into our implementation while pre-
serving portability. Third, we will port and apply ReconOS
to high-performance reconfigurable computing platforms.
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