
ReconOS: An RTOS Supporting
Hardware and Software Threads

Enno Lübbers and Marco Platzner
Computer Engineering Group
University of Paderborn

{enno.luebbers, platzner}@upb.de

E.Lübbers & M.Platzner, University of Paderborn 2

Operating Systems for Reconfigurable Hardware

 traditional approaches integrate hardware accelerators as slave
coprocessors

 Linux-based integration of reconfigurable logic
u microblaze-ucLinux [Bergmann et. al. 2006]

 preferred communication through FIFOs
u BORPH [So et. al. 2006]

 file-system based communication between hardware and software

 unified programming model for software and hardware threads
u hthreads [Peck et. al. 2006]

 hardware threads generated from multithreaded C-source
 OS functionality realized in hardware

u ReconOS
 based on software RTOS (eCos)
 hardware threads are written in VHDL

E.Lübbers & M.Platzner, University of Paderborn 3

Outline

 motivation
 programming model

u operating system objects
u hardware thread design

 execution model
u system architecture
u OS call delegation
u toolchain

 experimental results
u operating system overheads
u case study

 conclusion & outlook

E.Lübbers & M.Platzner, University of Paderborn 4

 applications are modelled with a set of objects
u tasks/threads, semaphores, FIFOs, shared memory, timers, etc.

u these objects, their semantics and possible relationships form
the programming model

RTOS-like Programming Model

E.Lübbers & M.Platzner, University of Paderborn 5

RTOS-like Programming Model

 classic (embedded) software implementation
u threads interact with the OS through API functions

 eg. semaphore_post(), thread_create(), malloc()
 distinction between blocking and non-blocking calls

u sequential execution of threads

 challenges in translating this model to hardware
u hardware is inherently parallel

 "hardware thread" is actually a misleading term
 hardware has no notion of function calls or even blocking function calls

u parallel execution of several hardware threads and one software thread
 SW-HW and HW-HW synchronization and communication
 scheduling

 ReconOS approach: extend software RTOS
u hardware threads with OS synchronization state machine
u delegate threads

E.Lübbers & M.Platzner, University of Paderborn 6

ReconOS Hardware Threads

 a hardware thread consists of two parts
u an OS synchronization state machine

 synchronizes thread with operating system calls
 serializes access to OS objects via the OS interface
 can be blocked by the OS interface

u parallel “user processes”
 communicate with OS

synchronization state machine
 can directly access local

memory blocks
 are not necessarily blocked

E.Lübbers & M.Platzner, University of Paderborn 7

ReconOS API for Hardware Threads

u VHDL function library
u may only be used in the OS

synchronization state machine

E.Lübbers & M.Platzner, University of Paderborn 8

 basic mechanism
u a delegate thread in software is associated with every hardware thread
u the delegate thread calls the OS kernel on behalf of the hardware thread
u all kernel responses are relayed back to the hardware thread

 advantages
u no modification of the kernel required
u extremely flexible
u transparent to kernel and

other threads

 drawbacks
u increased overhead due to

interrupt processing and
context switch

Delegate Threads

E.Lübbers & M.Platzner, University of Paderborn 9

System Architecture

 development platforms
u Xilinx ML403 (Virtex-4FX)
u Xilinx XUPV2P (Virtex-II Pro)
u embedded PowerPC 405 CPU(s)
u CoreConnect bus architecture
u FPGAs support partial

reconfiguration

 real-time operating system
u eCos for PowerPC ported to

development platforms
u eCos is a widely-used open

source RTOS
u modular, extensible design
u supplemented with OS interface for

hardware threads

E.Lübbers & M.Platzner, University of Paderborn 10

OS Call Implementation

sem_wait()

blo
cki
ng

sem_wait()

sem_wait()

bloc
king

interrupt

sem_wait()return value return value

return value

E.Lübbers & M.Platzner, University of Paderborn 11

Toolchain

 software threads are written in C
u using the eCos software API

 hardware threads are written in
VHDL

u using the ReconOS VHDL API

 architecture generation
u automatically inserts OS interfaces

and hardware threads into Xilinx
EDK platform templates

u configures and builds static eCos
library

 eCos extensions
u hardware thread object encapsulating delegate thread and OS interface

“driver”
u profiling support to track the state of the hardware threads' OS synchronization

state machines

E.Lübbers & M.Platzner, University of Paderborn 12

OS Overheads

 synthetic hardware and software
threads

u semaphore processing time (post → wait)
u time for non-blocking OS calls (i.e.

reconos_sem_post())
u OS interface takes 1051 slices (7% of

XC2VP30)

 OS calls involving hardware exhibit
higher latencies

u additional context switch to delegate
u interrupt processing
u bus access vs. cache access

 limited impact on system performance
u logic resources mainly used for heavy

data-parallel processing
u less synchronization-intensive control

dominated code

Semaphores (post → wait)

SW-to-SW 7.69 µs
SW-to-HW 13.84 µs

HW-to-SW 27.13 µs

HW-to-HW 34.19 µs

non-blocking OS call
SW 1.59 µs
HW 16.51 µs

E.Lübbers & M.Platzner, University of Paderborn 13

 three threads
u capture image from Ethernet
u apply LaPlacian filter
u display image on VGA monitor

 platform
u Xilinx XUPV2P (Virtex-II Pro)
u PPC @ 300MHz, rest @ 100MHz

 threads communicate through shared memory
u image resolution: 320x240 pixels, 8 bit greyscale
u image data organized into blocks (e.g. 40 lines = 1 block)
u a block is protected by two semaphores

 “ready” semaphore: data can be safely written into this block
 “new” semaphore: new data is available in this block

Case Study - Image Processing Filter

E.Lübbers & M.Platzner, University of Paderborn 14

Case Study - Implementation #1
 all threads in software

u all computations occur sequentially, with low OS overhead

E.Lübbers & M.Platzner, University of Paderborn 15

Case Study - Implementation #2
 move filter thread to hardware

u convolution filters allow for efficient parallelization

E.Lübbers & M.Platzner, University of Paderborn 16

Case Study - Implementation #3
 move also display thread to hardware

u display thread can output data concurrently with capture thread

E.Lübbers & M.Platzner, University of Paderborn 17

Case Study - Implementation #4
 parallel hardware threads

u double-buffer image data

E.Lübbers & M.Platzner, University of Paderborn 18

0

7,5

15,0

22,5

30,0

3 5

25,425,5
23,223,5

18,619,0

8,5

16,2

fra
m

es
/s

window size

SW-SW-SW
SW-HW-SW
SW-HW-HW
SW-HW-HW double buffered

Case Study - Results

E.Lübbers & M.Platzner, University of Paderborn 19

Case Study - Results

E.Lübbers & M.Platzner, University of Paderborn 20

Conclusion & Outlook

 RTOS for hardware and software threads
u unified programming model

 transparent synchronization and communication between hardware and
software threads

u RTOS-centric execution model
 extended eCos with support for hardware threads

u case study

 ongoing work
u include partial reconfiguration

 extend eCos scheduler
 preemption, task migration

u additional platforms
 Erlangen Slot Machine (ESM)

E.Lübbers & M.Platzner, University of Paderborn 21

Thank you

www.reconos.de

E.Lübbers & M.Platzner, University of Paderborn 22

OS Interface Implementation

 processes requests from
hardware thread

u handles blocking and resuming of
hardware thread

 master interface
u memory accesses are handled

directly
u single word and burst transfers
u direct access to entire system’s

address space (memory and
peripherals)

 slave interface
u OS object interactions are relayed

to delegate thread
u dedicated CPU interrupt
u CPU addressable registers
u used for OS communication

E.Lübbers & M.Platzner, University of Paderborn 23

OS Overheads

 OS call delays exhibit
sporadic glitches

u due to unpredictable bus
arbitration

u fix: use separate communication
channel for OS calls and
memory access HW → SW

SW → HW HW → HW

