ReconOS: An RTOS Supporting
Hardware and Software Threads

Enno Lubbers and Marco Platzner

Computer Engineering Group
University of Paderborn

{enno.luebbers, platzner}(@upb.de

'L(‘ UNIVERSITAT PADERBORN

Die Universitiit der Informationsgesellschaft

Operating Systems for Reconfigurable Hardware

traditional approaches integrate hardware accelerators as slave
COprocessors

Linux-based integration of reconfigurable logic
u microblaze-ucLinux [Bergmann et. al. 2006]
e preferred communication through FIFOs
u BORPH [So et. al. 2006]
o file-system based communication between hardware and software

unified programming model for software and hardware threads
u hthreads [Peck et. al. 2006]

e hardware threads generated from multithreaded C-source
e OS functionality realized in hardware

u ReconOS
e based on software RTOS (eCos)
e hardware threads are written in VHDL

E.LUbbers & M.Platzner, University of Paderborn

Outline

programming model

u operating system objects

u hardware thread design
execution model

u system architecture

u OS call delegation

u toolchain

experimental results

u operating system overheads
u case study

conclusion & outlook

E.LUbbers & M.Platzner, University of Paderborn

RTOS-like Programming Model

= applications are modelled with a set of objects
u tasks/threads, semaphores, FIFOs, shared memory, timers, etc.

signal 7SN
thread

shared
memory

1/”&

thread thread

sempahore

u these objects, their semantics and possible relationships form
the programming model

E.LUbbers & M.Platzner, University of Paderborn

RTOS-like Programming Model

= classic (embedded) software implementation
u threads interact with the OS through API functions
e eg. semaphore_post(), thread_create(), malloc()
e distinction between blocking and non-blocking calls
u sequential execution of threads

= challenges in translating this model to hardware
u hardware is inherently parallel

e "hardware thread" is actually a misleading term
e hardware has no notion of function calls or even blocking function calls

u parallel execution of several hardware threads and one software thread
e SW-HW and HW-HW synchronization and communication
e scheduling

® ReconOS approach: extend software RTOS
u hardware threads with OS synchronization state machine
u delegate threads

E.LUbbers & M.Platzner, University of Paderborn

ReconOS Hardware Threads

® a hardware thread consists of two parts

u an OS synchronization state machine
e synchronizes thread with operating system calls
e serializes access to OS objects via the OS interface
e can be blocked by the OS interface

~- hardware thread

(O] synchronlzatlon state machine ——————

u parallel “user processes”

/ sem_wait

e communicate with OS ‘C SEM A’
synchronization state machine soroo i

' / t 3 / shm_read
can directly access local l L R | shm_read()
memory blocks

are not necessarily blocked @ done ="1'/

run <= 0 -7

/ shm_write()
@ transitions occur only when
OS interface is ready
>

run % ? done

] . oS Inte'_r!ace i

user logic }

]

E.LUbbers & M.Platzner, University of Paderborn

ReconOS API for Hardware Threads

osif_fsm: process(clk, reset)

begi . .
e?fm(reset = '1’) then u VHDL funCt|0n |Ibl’ary

state <= IDLE;

_lr'zrcl:o<n;s ?e'set|(o_osif, i_osif); u may Only_be _used In the OS
sit_tising_ecge (clk) then synchronization state machine

|reconos_begin|(o_osif, i_osif);
if|[reconos ready|i_osif) then
case state Is

when IDLE =>
reconos_sem_wait|(o_osif , i_osif , CSEMA);
state <= READ; ~- hardware thread

when READ => : o ,
|reconos_shm_read_burstk o_osif, i_osif, OS synchronization state machine)

local_address,
global_address);

state <= RUN;

when RUN =>
run <= '1’;
if done = ’1’ then
run <= ‘0’
state <= WRITE
end if;

| / sem_post
| (C_SEM_B)

done ='1"/

run <= ‘0' =
/ shm wnte() \ ,

when WRITE =>

Ireconos shm_write burstl(o osif, i_osif,
local_ address
global_ address);

transitions occur only when
OS interface is ready

run % ? done

user logic

state <= POST;

OS Interface

when POST =>
| reconos_sem. EOS |o osif, i_osif , C.SEMB);
state <= R

when others => null;
end case;
end if;
end if;
end process;

|

E.LUbbers & M.Platzner, University of Paderborn

Delegate Threads

= basic mechanism
u a delegate thread in software is associated with every hardware thread
u the delegate thread calls the OS kernel on behalf of the hardware thread
u all kernel responses are relayed back to the hardware thread

= advantages
u no modification of the kernel required
u extremely flexible
u transparent to kernel and

other threads
delegate
thread '
= drawbacks ; $
u increased overhead due to I hw thread

interrupt processing and ﬁi

context switch &

E.LUbbers & M.Platzner, University of Paderborn

System Architecture

cher memory <:> DRAM
peripherals controller

@ @ system bus bus
eCos arbiter
) 1T 1T 17

OS OS OS

+

. interface I_ interface interface
interrupt

<) X
controller
; ; I

hw hw hw
thread thread thread

development platforms = real-time operating system
Xilinx ML403 (Virtex-4F X) u eCos for PowerPC ported to
Xilinx XUPV2P (Virtex-Il Pro) development platforms
embedded PowerPC 405 CPU(s) eCos is a widely-used open

source RTOS
modular, extensible design

FPGAs support partial supplemented with OS interface for
reconfiguration hardware threads

CoreConnect bus architecture

E.LUbbers & M.Platzner, University of Paderborn

OS Call Implementation

shared memory

redunn walt(e i E system bus

E.LUbbers & M.Platzner, University of Paderborn

Toolchain

software threads are written in C

u using the eCos software API software RoconeH hardware
thread (C) PoS thread (VHDL)

hardware threads are written in ™| r——: —
VHDL

u using the ReconOS VHDL API eCos liprary | architecture

template

architecture generation \ 7/ \/: v

u automatically inserts OS interfaces FPGA
and hardware threads into Xilinx compile & link toolflow
EDK platform templates

configures and builds static eCos \ ‘
library executable ~» ¥ 4— Dbitstream

eCos extensions

u hardware thread object encapsulating delegate thread and OS interface
“driver”

u profiling support to track the state of the hardware threads' OS synchronization
state machines

E.LUbbers & M.Platzner, University of Paderborn

OS Overheads

synthetic hardware and software
threads
semaphore processing time (post — wait)

time for non-blocking OS calls (i.e.

reconos sem post()) <
OS interface takes 1051 slices (7% of /

XC2VP30)

SW thread SW thread

HW thread HW thread

OS calls involving hardware exhibit M —
higher latencies

u additional context switch to delegate
u interrupt processing
u bus access vs. cache access

Semaphores (post — wait)

SW-to-SW 7.69 us
SW-to-HW 13.84 us

limited impact on system performance HW-to-SW 27.13 ps

u logic resources mainly used for heavy HW-to-HW 34.19 ps
data-parallel processing

u less synchronization-intensive control non-blocking OS call
dominated code SW 1.59 us

HW 16.51 ps

E.LUbbers & M.Platzner, University of Paderborn

Case Study - Image Processing Filter

Host PC

= three threads B e capture thread
\ = i (software)
u capture image from Ethernet
u apply LaPlacian filter USB'I’ ol

. . . image

u display image on VGA monitor filter thread
B (hard- or
software)

N filtered
Camera image

A
i
I

u p I ath 'm ‘ display thread
s Xilinx XUPV2P (Virtex-lI Pro) e DS sotware) ooy

. PPC @ 300MHz, rest @ 100MHz ~ wonior

® threads communicate through shared memory
u image resolution: 320x240 pixels, 8 bit greyscale
u image data organized into blocks (e.g. 40 lines = 1 block)

u a block is protected by two semaphores

® “ready” semaphore: data can be safely written into this block
® “new” semaphore: new data is available in this block

E.LUbbers & M.Platzner, University of Paderborn

Case Study - Implementation #1

= all threads in software
u all computations occur sequentially, with low OS overhead

capture thread
(software)

filter thread
(software)

display thread
(software)

capture filter capture filter

\ / -~

semaphore operations

E.LUbbers & M.Platzner, University of Paderborn

Case Study - Implementation #2

= move filter thread to hardware
u convolution filters allow for efficient parallelization

capture thread
(software)

filter thread J

(hardware)

display thread
(software)

CPU capture capture

filter
(HW)

E.LUbbers & M.Platzner, University of Paderborn

Case Study - Implementation #3

® move also display thread to hardware
u display thread can output data concurrently with capture thread

capture thread
(software)

!

{ filter thread \

(hardware)

!

display thread
(hardware)

CPU capture capture capture | OS

filter

(HW)
display

(HW)

filter filter filter

display

E.LUbbers & M.Platzner, University of Paderborn

Case Study - Implementation #4

= parallel hardware threads
u double-buffer image data

capture thread
(software)

double
buffered

{ filter thread ’

(hardware)

double
buffered

display thread
(hardware)

CPU capture capture capture capture capture

filter

(HW)
display

(HW)

filter filter filter filter

display display display

E.LUbbers & M.Platzner, University of Paderborn

Case Study - Results

30,0
255 25 4
23,5 23,2
22,5 L
19,0 18,6
% 16.2
“E’ 15,0 -
©
= | SW-SW-SW
8,5] SW-HW-SW
7.5 | SW-HW-HW
| | SW-HW-HW double
O I
3 5
window size

E.LUbbers & M.Platzner, University of Paderborn

18

Case Study - Results

‘2]
~
()]
)
-
©
| -
y—

SW-SW-SW, w=3 —+—
SW-HW-SW, w=3 ----s---
SW—SW—SW, W=5 S .
SW-HW-SW, w=5 g

block size

E.LUbbers & M.Platzner, University of Paderborn

Conclusion & Outlook

® RTOS for hardware and software threads

u unified programming model

e transparent synchronization and communication between hardware and
software threads

u RTOS-centric execution model
e extended eCos with support for hardware threads

u case study

= ongoing work
u include partial reconfiguration

e extend eCos scheduler
e preemption, task migration

u additional platforms
e Erlangen Slot Machine (ESM)

E.LUbbers & M.Platzner, University of Paderborn

Thank you

www.reconos.de

E.LUbbers & M.Platzner, University of Paderborn

OS Interface Implementation

processes requests from
hardware thread
u handles blocking and resuming of

system bus

hardware thread

master interface
memory accesses are handled

software
accessible
registers

soepRIUl SO

directly
single word and burst transfers

!

direct access to entire system’s

to interrupt

) controller

address space (memory and
peripherals)

slave interface

OS object interactions are relayed
to delegate thread

dedicated CPU interrupt

CPU addressable registers
used for OS communication

peaiy) aiemp.ey

E.LUbbers & M.Platzner, University of Paderborn

-

OS Overheads

6000

= OS call delays exhibit
sporadic glitches

u due to unpredictable bus 4500
arbitration

u fix: use separate communication
channel for OS calls and

T
hardware to software +

4000

3500

memaory access 3000

HW — SW

2500

2000 L L
0 1000 2000

sample

T T T T
software to hardware ~ + + hardware to hardware ~ +

1000 0 1000

sample sample

E.LUbbers & M.Platzner, University of Paderborn

