An Adaptive Sequential Monte Carlo

Framework with Runtime HW/SW
Partitioning

Markus Happe
Enno Lubbers
Marco Platzner

{ markus.happe | enno.luebbers | platzner } @ uni-paderborn.de

Computer Engineering Group
University of Paderborn, Germany

L(‘ The 2009 International Conference on Field-Programmable Technology (FPT’09)
LA\! UNIVERSITAT PADERBORN Sydney, Australia, 10.12.2009

Die Universitit der Informationsgesellschaft

= motivation

= multithreaded OS for reconfigurable devices

= programming model

= execution model

= sequential Monte Carlo framework
= sampling-importance-resampling algorithm
= agpplication modeling

= runtime adaptation

= experimental results

= conclusion & outlook

Motivation

= sequential Monte Carlo (SMC) methods

= on-line estimation of internal state of non-linear dynamic systems

= track a number of state estimates (i.e. particles) over time

= used for object tracking [Woelk 2005], data stream classification [Granmo 2005], ...
= jterative methods

= tracking accuracy generally increases with number of particles

= computationally intensive

estimated system state (particle)

» position
» velocity
» Size

Motivation

sequential Monte Carlo (SMC) methods

= on-line estimation of internal state of non-linear dynamic systems

= track a number of state estimates (i.e. particles) over time

= used for object tracking [Woelk 2005], data stream classification [Granmo 2005], ...
= [terative methods

= tracking accuracy generally increases with number of particles

computationally intensive

embedded SMC applications need hardware support

= existing work [Athalye 2005, Sankaranarayanan 2005] focuses on HW-only systems
= SMC-based algorithms have both control-dominated and data-parallel parts
e combine software-based implementation with specialized hardware accelerators
flexible SMC framework for hybrid HW/SW systems

= multithreaded programming model

= application is partitioned into threads

= threads communicate and synchronize using programming model primitives
e.g., semaphores, mutexes, mailboxes, shared memory provided by an OS

= established model in software-based systems (e.g., POSIX pthreads, eCos)

L
softwe

threa software
ad

monolithic
software
application

™

software
thread

N\
—/

operating system operating system

= multithreaded programming model

= application is partitioned into threads

= threads communicate and synchronize using programming model primitives
e.g., semaphores, mutexes, mailboxes, shared memory provided by an OS

= established model in software-based systems (e.g., POSIX pthreads, eCos)

L L
softwe

threa software

\ thra d
: hardware
/ thread

softwe
threa software

monolithic ~
software \ - E
application software

thread

operating system operating system operating system

= extension to reconfigurable hardware (ReconQOS)

= hardware modules are modeled as hardware threads

= communicate and synchronize seamlessly with other threads

eXGCUtIOﬂ mOdel FPGA memory bus

= Implemented on A memory
Xilinx Virtex-4FX100 controller

N @ interface

= software operating system

kernel (eCos) is executed on CPU interrupt hardware

h d ’[h d " d controller thread
= hardware threads are connecte

through operating system interface ;

CPU

W os

interface

= hardware threads have direct bus

access to shared memory o
= OS calls are relayed to the OS kernel m hardware
thread

through a delegate thread on the
CPU

control bus

run-time reconfiguration

= hardware threads can be transparently reconfigured at run-time

= scheduling of hardware threads is done in software

5

= mMotivation

= multithreaded OS for reconfigurable devices

= programming model

m execution model

= sequential Monte Carlo framework
= sampling-importance-resampling algorithm
= agpplication modeling

= runtime adaptation

= experimental results

= conclusion & outlook

Sampling-Importance-Resampling (SIR)

Importance

ﬁ’w’i """" i """ ? Ti """"" 3 f?ﬁ)? """" XX Remping

------------------------- ooggg
= [terative three-step algorithm

= sampling: applies system model to generate new estimates

p(Yt = yt‘Xt)

= Importance: weighs new particles according to new measurement

= resampling: duplicates ,good” estimates, removes ,bad" estimates

Sampling-Importance-Resampling (SIR)

[l i L o o . : i Importance
SR T O —
TEoo g O Orgrg g

= [terative three-step algorithm

= sampling: applies system model to generate new estimates
= Importance: weighs new particles according to new measurement

= resampling: duplicates ,good” estimates, removes ,bad" estimates

Sampling-Importance-Resampling (SIR)

Importance

AR ? """"" 4 ?ﬁ)? """" S Resampling
TEoo g O jj ----- 8 g g

= [terative three-step algorithm

= sampling: applies system model to generate new estimates
= Importance: weighs new particles according to new measurement

= resampling: duplicates ,good” estimates, removes ,bad" estimates

Sampling-Importance-Resampling (SIR)

Importance

AR ? """"" 4 ?ﬁ)? """" S Resampling
TEoo g O jj ----- 8 g g

= [terative three-step algorithm

= sampling: applies system model to generate new estimates
= Importance: weighs new particles according to new measurement

= resampling: duplicates ,good” estimates, removes ,bad" estimates

Sampling-Importance-Resampling (SIR)

Importance

ﬁ’w’i """" i """ ? fi """"" i """ T?ﬁ)? """" 2 S

------------------------- ooggg
= [terative three-step algorithm

= sampling: applies system model to generate new estimates

p(Yt = yt‘Xt)

= Importance: weighs new particles according to new measurement

= resampling: duplicates ,good” estimates, removes ,bad" estimates

Sampling-Importance-Resampling (SIR)

Importance

p(Y:

Resampling

B N

= [terative three-step algorithm

= sampling: applies system model to generate new estimates
= Importance: weighs new particles according to new measurement

= resampling: duplicates ,good” estimates, removes ,bad" estimates

Multithreaded SMC Framework

new measurement

state estimate

preSampling '
_)
preResampling

sampling observation Importance resampling
t+1 I 1
I

[] message box @ software thread D hardware thread

implementation with four stages

= each stage can be implemented using multiple threads (hardware or software)
= sampling, importance, and observation stages can process data in parallel
= resampling stage needs data from all previous stages

= preSampling and preResampling threads synchronize iterations and manage data
granularity

8

Application Modeling

= system model p(X¢| X1 = 2t_y)

= predicts new particle based on previous ;

particle prediction() l'

= observation model

= extracts relevant features from given extract_observation() l

measurement
= measurement model p(Y: = v | X4)
= determines likelihood that the current ;

measurement fits the predicted state Llikelihood() ll

System Composition

user application framework
get_new_measurement () |(> preSampling l
— samplin -
prediction() piing I(' :
1
— observation I(==
extract_observation() :
importance -
other P I(:
application likelihood() . '
code preResampling :
1
iteration_done() resampling l(- ==
1
1
1
in 1t_pa rticles () l (thread control l :
I ’ 1
T 1
I 1
I 1
I 1
user-defined (SW/HW) D e mmccemmas » Paticledata | i aeeaa-aaa- -
structures

framework-defined (stages)

10

Adaptive HW/SW Partitioning

dynamic change of a stage’s

Lt performance
W/SW thread composition data |
= after each iteration, preResampling() calls l
iteration_done()
iteration_done() I
= pbased on current performance data (e.g. cycles
per iteration), user code decides on new l set_importance_hw/sw()

thread control

partitioning l

= user code sets new numbers of HW/SW threads

for each stage
pthread_kill()

= framework transparently terminates/creates / rthread_create()
threads

= operating system handles low-level thread
management and reconfiguration

Erv:b

11

Adaptive HW/SW Partitioning

dynamic change of a stage’s

Lt performance
W/SW thread composition data |
= after each iteration, preResampling() calls l
iteration_done()
iteration_done() I
= pbased on current performance data (e.g. cycles
per iteration), user code decides on new l set_importance_hw/sw()

thread control

partitioning l

= user code sets new numbers of HW/SW threads

for each stage
pthread_kill()

= framework transparently terminates/creates / rthread_create()
threads

= operating system handles low-level thread
management and reconfiguration

11

Application Example

= Object tracking in a video sequence
= particle data / system state: position p, velocity v, scaling factor S
= system model: Pt = pi—1 + vi—1 + N(0,07)
= measurement: video frame
= observation: HSV color histogram H;(k), k=10,...,1 —1

. —(1— 2. \/(Hi(k)HR(k))>
= |ikelihood: wy; = exp Osk<l A

reference

frame 150 frame 260

12

Application Example

= performance of individual partitionings

= sw: all threads run in software

= hw-+ a number of threads run in hardware

frame 150 frame 260

40000

35000
30000
25000 {-vr-x7ip o
20000 |
15000 ranpY
10000 |

thousand clock cycles/frame

s
RO
o e
RS
S elesy,
— EREIRAN —
T Wy
S oW

“'h.
U3 E B et ainn man s 880 SR IR YW R 2]

0]]]]]]]
0 50 100 150 200 250 300 350 400

frame

13

Application Example

= performance of individual partitionings

= sw: all threads run in software

= hw-+ a number of threads run in hardware

= adaptive: run-time change between hw, and sw

frame 150 frame 260

40000 — 40000

sw SW : sSw
35000 rpww ------- - 35000 £ adaﬁyve e
Mo Mitoo hee T DR Wo --nsoes
30000 _1 .\' 4 "'\"\ 30000 L o 0‘;.;1‘- Ny '~““‘ o ""‘ ; ”
P4 ~| 1

: -’ - ‘Qﬁ P, | 1) b
AT ’ ’ -
A '-.7’ *ﬁ‘5~.~~‘d ‘ ‘Q”l“""i i

A]

25000 | s,

1 I
1 pan | by I‘ . L:k,;llﬁL

\
25000 f[-:- g RORTAVV
»* Ty et “

20000 [g pu e\ MW -

» v

rlel o dan e Ve

.“.) RAA f, Saap| ‘\"_ S
.

15000 [
PR L IR v *s®
b, - vaf0

10000 [

20000 £
15000 F
10000 | ; Mo

hl .
* £
hWooi hWooii R

W ; :
5000 | S . 5000 f : -

thousand clock cycles/frame
thousand clock cycles/frame

oy Ty -
Bl v a5 88005 R W A T

0]]]]]]] 0 :]] EI]]
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250

frame frame

13

Conclusion

multithreaded framework for sequential Monte-Carlo
methods

= allows creation of hardware-accelerated SMC applications from different
application domains, manages recurring SMC-related tasks

= pbased on SIR algorithm with added observation stage
= implemented on top of the multithreaded operating system ReconOS
= simplifies creation of prototypes for HW/SW design space exploration

= can exploit data-dependent thread performance through adaptive repartitioning

future work

= enable a greater degree of run-time reconfigurability (RTR)
= reduce reconfiguration overhead = increase applicability and feasibility of RTR

= research into scheduling and migration of hardware threads

14

motivation

= multithreaded OS for reconfigurable devices

= programming model

m execution model

= sequential Monte Carlo framework

= sampling-importance-resampling algorithm

= gpplication modeling

= runtime adaptation

B cX
m CO

OE

NC

15

Thank you.

r'mental results

usion & outlook
inNfo@reconos.de
WWW.reconos.de

mailto:info@reconos.de
mailto:info@reconos.de
http://www.reconos.de
http://www.reconos.de

