
The 2009 International Conference on Field-Programmable Technology (FPT’09)
Sydney, Australia, 10.12.2009

An Adaptive Sequential Monte Carlo
Framework with Runtime HW/SW
Partitioning

Markus Happe
Enno Lübbers
Marco Platzner

{ markus.happe | enno.luebbers | platzner } @ uni-paderborn.de

Computer Engineering Group
University of Paderborn, Germany

Outline

■ motivation

■ multithreaded OS for reconfigurable devices
■ programming model

■ execution model

■ sequential Monte Carlo framework
■ sampling-importance-resampling algorithm

■ application modeling

■ runtime adaptation

■ experimental results

■ conclusion & outlook

2

Motivation

3

■ sequential Monte Carlo (SMC) methods
■ on-line estimation of internal state of non-linear dynamic systems

■ track a number of state estimates (i.e. particles) over time

■ used for object tracking [Woelk 2005], data stream classification [Granmo 2005], ...

■ iterative methods

■ tracking accuracy generally increases with number of particles

➡ computationally intensive

‣ position
‣ velocity
‣ size

estimated system state (particle)

Motivation

3

■ sequential Monte Carlo (SMC) methods
■ on-line estimation of internal state of non-linear dynamic systems

■ track a number of state estimates (i.e. particles) over time

■ used for object tracking [Woelk 2005], data stream classification [Granmo 2005], ...

■ iterative methods

■ tracking accuracy generally increases with number of particles

➡ computationally intensive

■ embedded SMC applications need hardware support
■ existing work [Athalye 2005, Sankaranarayanan 2005] focuses on HW-only systems

■ SMC-based algorithms have both control-dominated and data-parallel parts

• combine software-based implementation with specialized hardware accelerators

➡ flexible SMC framework for hybrid HW/SW systems

■ multithreaded programming model
■ application is partitioned into threads

■ threads communicate and synchronize using programming model primitives
e.g., semaphores, mutexes, mailboxes, shared memory provided by an OS

■ established model in software-based systems (e.g., POSIX pthreads, eCos)

ReconOS

4

software
thread software

thread
software
thread

operating system

monolithic
software

application

operating system

■ multithreaded programming model
■ application is partitioned into threads

■ threads communicate and synchronize using programming model primitives
e.g., semaphores, mutexes, mailboxes, shared memory provided by an OS

■ established model in software-based systems (e.g., POSIX pthreads, eCos)

ReconOS

4

software
thread software

thread
software
thread

operating system

monolithic
software

application

operating system

software
thread software

thread

operating system

hardware
thread

■ extension to reconfigurable hardware (ReconOS)
■ hardware modules are modeled as hardware threads

■ communicate and synchronize seamlessly with other threads

ReconOS

■ execution model
■ implemented on

Xilinx Virtex-4FX100

■ software operating system
kernel (eCos) is executed on CPU

■ hardware threads are connected
through operating system interface

■ hardware threads have direct bus
access to shared memory

■ OS calls are relayed to the OS kernel
through a delegate thread on the
CPU

5

■ run-time reconfiguration
■ hardware threads can be transparently reconfigured at run-time

■ scheduling of hardware threads is done in software

FPGA

CPU

OS kernel

sw
thread

interrupt
controller

control bus

memory bus

DRAM
memory
controller OS

interface

OS
interface

hardware
thread

hardware
thread

sw
thread

Outline

■ motivation

■ multithreaded OS for reconfigurable devices
■ programming model

■ execution model

■ sequential Monte Carlo framework
■ sampling-importance-resampling algorithm

■ application modeling

■ runtime adaptation

■ experimental results

■ conclusion & outlook

6

Sampling-Importance-Resampling (SIR)

■ iterative three-step algorithm
■ sampling: applies system model to generate new estimates

■ importance: weighs new particles according to new measurement

■ resampling: duplicates „good“ estimates, removes „bad“ estimates

7

p(
Y

t
=

y t
|X

t)

Xt

xi
t−1

x̃i
t

x̃i
t, w

i
t

xi
t

Importance

Resampling

Sampling

Sampling-Importance-Resampling (SIR)

■ iterative three-step algorithm
■ sampling: applies system model to generate new estimates

■ importance: weighs new particles according to new measurement

■ resampling: duplicates „good“ estimates, removes „bad“ estimates

7

p(
Y

t
=

y t
|X

t)

Xt

xi
t−1

x̃i
t

x̃i
t, w

i
t

xi
t

Importance

Resampling

Sampling

Sampling-Importance-Resampling (SIR)

■ iterative three-step algorithm
■ sampling: applies system model to generate new estimates

■ importance: weighs new particles according to new measurement

■ resampling: duplicates „good“ estimates, removes „bad“ estimates

7

p(
Y

t
=

y t
|X

t)

Xt

xi
t−1

x̃i
t

x̃i
t, w

i
t

xi
t

Importance

Resampling

Sampling

Sampling-Importance-Resampling (SIR)

■ iterative three-step algorithm
■ sampling: applies system model to generate new estimates

■ importance: weighs new particles according to new measurement

■ resampling: duplicates „good“ estimates, removes „bad“ estimates

7

p(
Y

t
=

y t
|X

t)

Xt

xi
t−1

x̃i
t

x̃i
t, w

i
t

xi
t

Importance

Resampling

Sampling

0.4

0.1 0.2

0.9

Sampling-Importance-Resampling (SIR)

■ iterative three-step algorithm
■ sampling: applies system model to generate new estimates

■ importance: weighs new particles according to new measurement

■ resampling: duplicates „good“ estimates, removes „bad“ estimates

7

p(
Y

t
=

y t
|X

t)

Xt

xi
t−1

x̃i
t

x̃i
t, w

i
t

xi
t

Importance

Resampling

Sampling

x30.4

0.1 0.2

0.9

Sampling-Importance-Resampling (SIR)

■ iterative three-step algorithm
■ sampling: applies system model to generate new estimates

■ importance: weighs new particles according to new measurement

■ resampling: duplicates „good“ estimates, removes „bad“ estimates

7

p(
Y

t
=

y t
|X

t)

Xt

xi
t−1

x̃i
t

x̃i
t, w

i
t

xi
t

Importance

Resampling

Sampling

x30.4

0.1 0.2

0.9

Multithreaded SMC Framework

■ implementation with four stages
■ each stage can be implemented using multiple threads (hardware or software)

■ sampling, importance, and observation stages can process data in parallel

■ resampling stage needs data from all previous stages

■ preSampling and preResampling threads synchronize iterations and manage data
granularity

8

sampling observation importance resampling

preSampling

preResampling

tt+1

new measurement

state estimate

software thread hardware threadmessage box

Application Modeling

■ system model
■ predicts new particle based on previous

particle

■ observation model
■ extracts relevant features from given

measurement

■ measurement model
■ determines likelihood that the current

measurement fits the predicted state

9

p(Xt|Xt−1 = xi
t−1)

prediction()

p(Yt = yt|Xt)

likelihood()

extract_observation()

user application

prediction(

System Composition

10

framework

other
application

code

get_new_measurement()

iteration_done()

init_particles()

preSampling

sampling

observation

importance

preResampling

resampling

thread control

particle data
structures

user-defined (SW/HW)

framework-defined (stages)

prediction()

extract_observation()

likelihood()

Adaptive HW/SW Partitioning

11

■ dynamic change of a stage‘s
HW/SW thread composition
■ after each iteration, preResampling() calls

iteration_done()

■ based on current performance data (e.g. cycles
per iteration), user code decides on new
partitioning

■ user code sets new numbers of HW/SW threads
for each stage

■ framework transparently terminates/creates
threads

■ operating system handles low-level thread
management and reconfiguration

iteration_done()

performance
data

thread control

set_importance_hw/sw()

pthread_kill()
rthread_create()

Adaptive HW/SW Partitioning

11

■ dynamic change of a stage‘s
HW/SW thread composition
■ after each iteration, preResampling() calls

iteration_done()

■ based on current performance data (e.g. cycles
per iteration), user code decides on new
partitioning

■ user code sets new numbers of HW/SW threads
for each stage

■ framework transparently terminates/creates
threads

■ operating system handles low-level thread
management and reconfiguration

iteration_done()

performance
data

thread control

set_importance_hw/sw()

pthread_kill()
rthread_create()

Application Example

12

■ object tracking in a video sequence
■ particle data / system state: position , velocity , scaling factor

■ system model:

■ measurement: video frame

■ observation: HSV color histogram

■ likelihood:

pt = pt−1 + vt−1 +N (0, σ2)
p v s

wi

t
= exp

−

1−
P

0≤k<l

√
(Hi(k)HR(k))

!
Hi(k), k = 0, . . . , l − 1

reference

frame 5 frame 90 frame 260 frame 150

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50 100 150 200 250 300 350 400

th
ou

sa
nd

 c
lo

ck
 c

yc
le

s/
fra

m
e

frame

sw
hwohwoohwihwiihwoihwooihwoiihwooii

sw

hwo hwoo

hwi

hwii

hwoi

hwooi

hwoii

hwooii

Application Example

■ performance of individual partitionings
■ sw: all threads run in software

■ hw*: a number of threads run in hardware

13

frame 5 frame 90

frame 260 frame 150

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50 100 150 200 250 300 350 400

th
ou

sa
nd

 c
lo

ck
 c

yc
le

s/
fra

m
e

frame

sw
hwohwoohwihwiihwoihwooihwoiihwooii

sw

hwo hwoo

hwi

hwii

hwoi

hwooi

hwoii

hwooii

Application Example

■ performance of individual partitionings
■ sw: all threads run in software

■ hw*: a number of threads run in hardware

13

frame 5 frame 90

frame 260 frame 150

■ adaptive: run-time change between hwo and sw

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50 100 150 200 250

th
ou

sa
nd

 cl
oc

k c
yc

les
/fr

am
e

frame

sw
adaptive

hwo

Conclusion

14

■ multithreaded framework for sequential Monte-Carlo
methods
■ allows creation of hardware-accelerated SMC applications from different

application domains, manages recurring SMC-related tasks

■ based on SIR algorithm with added observation stage

■ implemented on top of the multithreaded operating system ReconOS

■ simplifies creation of prototypes for HW/SW design space exploration

■ can exploit data-dependent thread performance through adaptive repartitioning

■ future work
■ enable a greater degree of run-time reconfigurability (RTR)

■ reduce reconfiguration overhead ➡ increase applicability and feasibility of RTR

■ research into scheduling and migration of hardware threads

■ motivation

■ multithreaded OS for reconfigurable devices
■ programming model

■ execution model

■ sequential Monte Carlo framework
■ sampling-importance-resampling algorithm

■ application modeling

■ runtime adaptation

■ experimental results

■ conclusion & outlook

15

Thank you.

info@reconos.de
www.reconos.de

mailto:info@reconos.de
mailto:info@reconos.de
http://www.reconos.de
http://www.reconos.de

