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Motivation
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■ sequential Monte Carlo (SMC) methods
■ on-line estimation of internal state of non-linear dynamic systems

■ track a number of state estimates (i.e. particles) over time

■ used for object tracking [Woelk 2005], data stream classification [Granmo 2005], ...

■ iterative methods

■ tracking accuracy generally increases with number of particles

➡ computationally intensive
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■ tracking accuracy generally increases with number of particles

➡ computationally intensive

■ embedded SMC applications need hardware support
■ existing work [Athalye 2005, Sankaranarayanan 2005] focuses on HW-only systems

■ SMC-based algorithms have both control-dominated and data-parallel parts

• combine software-based implementation with specialized hardware accelerators

➡ flexible SMC framework for hybrid HW/SW systems



■ multithreaded programming model
■ application is partitioned into threads

■ threads communicate and synchronize using programming model primitives
e.g., semaphores, mutexes, mailboxes, shared memory provided by an OS

■ established model in software-based systems (e.g., POSIX pthreads, eCos)

ReconOS
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■ extension to reconfigurable hardware (ReconOS)
■ hardware modules are modeled as hardware threads

■ communicate and synchronize seamlessly with other threads



ReconOS

■ execution model
■ implemented on

Xilinx Virtex-4FX100

■ software operating system
kernel (eCos) is executed on CPU

■ hardware threads are connected 
through operating system interface

■ hardware threads have direct bus 
access to shared memory

■ OS calls are relayed to the OS kernel 
through a delegate thread on the 
CPU
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■ run-time reconfiguration
■ hardware threads can be transparently reconfigured at run-time

■ scheduling of hardware threads is done in software
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Sampling-Importance-Resampling (SIR)

■ iterative three-step algorithm
■ sampling: applies system model to generate new estimates

■ importance: weighs new particles according to new measurement

■ resampling: duplicates „good“ estimates, removes „bad“ estimates
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Multithreaded SMC Framework

■ implementation with four stages
■ each stage can be implemented using multiple threads (hardware or software)

■ sampling, importance, and observation stages can process data in parallel

■ resampling stage needs data from all previous stages

■ preSampling and preResampling threads synchronize iterations and manage data 
granularity
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Application Modeling

■ system model
■ predicts new particle based on previous 

particle

■ observation model
■ extracts relevant features from given 

measurement

■ measurement model
■ determines likelihood that the current 

measurement fits the predicted state
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user application

prediction(

System Composition
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Adaptive HW/SW Partitioning

11

■ dynamic change of a stage‘s
HW/SW thread composition
■ after each iteration, preResampling() calls 

iteration_done()

■ based on current performance data (e.g. cycles 
per iteration), user code decides on new 
partitioning

■ user code sets new numbers of HW/SW threads 
for each stage

■ framework transparently terminates/creates 
threads

■ operating system handles low-level thread 
management and reconfiguration

iteration_done()

performance 
data

thread control

set_importance_hw/sw()

pthread_kill()
rthread_create()
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Application Example
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■ object tracking in a video sequence
■ particle data / system state: position   , velocity   , scaling factor

■ system model:

■ measurement: video frame

■ observation: HSV color histogram

■ likelihood:

pt = pt−1 + vt−1 +N (0, σ2)
p v s

wi

t
= exp

−
 

1−
P

0≤k<l

√
(Hi(k)HR(k))

!
Hi(k), k = 0, . . . , l − 1

reference

frame 5 frame 90 frame 260 frame 150 
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Application Example

■ performance of individual partitionings
■ sw: all threads run in software

■ hw*: a number of threads run in hardware
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Application Example

■ performance of individual partitionings
■ sw: all threads run in software

■ hw*: a number of threads run in hardware
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frame 5 frame 90 

frame 260 frame 150 

■ adaptive: run-time change between hwo and sw
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Conclusion
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■ multithreaded framework for sequential Monte-Carlo 
methods
■ allows creation of hardware-accelerated SMC applications from different 

application domains, manages recurring SMC-related tasks

■ based on SIR algorithm with added observation stage

■ implemented on top of the multithreaded operating system ReconOS

■ simplifies creation of prototypes for HW/SW design space exploration

■ can exploit data-dependent thread performance through adaptive repartitioning

■ future work
■ enable a greater degree of run-time reconfigurability (RTR)

■ reduce reconfiguration overhead ➡ increase applicability and feasibility of RTR

■ research into scheduling and migration of hardware threads
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